已知動點在橢圓上,若點坐標為,則的最小值是           
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

直角梯形ABCD中∠DAB=90°,AD∥BC,AB=2,AD=,BC=.橢圓C以A、B為焦點且經(jīng)過點D.
(1)建立適當坐標系,求橢圓C的方程;
(2)若點E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點且,若存在,求出直線l與AB夾角的范圍,若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

14分)已知橢圓中心在原點,焦點在x軸上,一個頂點為A(0,-1),且其右焦點到直線x-y+=0的距離為3.(I)求橢圓的方程;
(II)是否存在斜率為k(k≠0)的直線l,使l與已知橢圓交于不同的兩點M、N,
且|AN|=|AM|?若存在,求出k的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線與橢圓有相同焦點,且經(jīng)過點.
(1)求雙曲線的方程;
(2) 過點作斜率為1的直線交雙曲線于兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)F1、F2分別為橢圓C: =1(a>b>0)的左、右焦點.
(Ⅰ)若橢圓上的點A(1,)到點F1、F2的距離之和等于4,求橢圓C的方程;
(Ⅱ)設(shè)點是(Ⅰ)中所得橢圓C上的動點,求線段的中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在一橢圓中以焦點為直徑兩端點的圓,恰好過短軸的兩頂點,則此橢圓的離心率等于  ( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知橢圓,則以為中點的弦的長度為            

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知為橢圓的兩個焦點,過作橢圓的弦,若的周長為16,離心率為,則橢圓的方程為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若點在橢圓上,、分別是橢圓的兩焦點,且,則的面積是 (   )                                               
2              1                        

查看答案和解析>>

同步練習冊答案