18.如圖,O為坐標原點,過點P(2,0)且斜率為k的直線l交拋物線y2=2xMx1y1),Nx2y2)兩點.

(Ⅰ)寫出直線l的方程;

(Ⅱ)求x1x2y1y2的值;

(Ⅲ)求證:OMON.

18.本小題主要考查直線、拋物線等基本知識,考查運用解析幾何的方法分析問題和解決問題的能力

(Ⅰ)解:直線l的方程為y=kx-2)  (k≠0).                         ①

(Ⅱ)解:由①及y2=2x消去yk2x2-2(2k2+1)x+4k2=0.             ②

MN的橫坐標x1x2是②的兩個根,由韋達定理得

x1x2==4.

y12=2x1y22=2x2

得(y1y22=4x1x2=4×4=16,

注意到y1y2<0,所以y1y2=-4.

(Ⅲ)證明:設直線OM,ON的斜率分別為k1,k2

k1=,k2=

相乘得k1k2===-1,

所以OMON.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,O為坐標原點,點A,B,C均在⊙O上,點A(
3
5
,
4
5
)
,點B在第二象限,點C(1,0).
(Ⅰ)設∠COA=θ,求sin2θ的值;
(Ⅱ)若△AOB為等邊三角形,求點B的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,O為坐標原點,過點P(2,0)且斜率為k的直線l交拋物線y2=2x于M(x1,y1),N(x2,y2)兩點.
(1)寫出直線l的方程;
(2)求x1x2與y1y2的值;
(3)求證:OM⊥ON.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,O為坐標原點,直線l在x軸和y軸上的截距分別是a和b,且交拋物線y2=2px(p>0)于M(x1,y1)、N(x2,y2)兩點(異于原點).
(1)證明:
1
y1
+
1
y2
=
1
b

(2)當a=2p時,求證:OM⊥ON.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(文)如圖,O為坐標原點,過點P(2,0)且斜率為k的直線l交拋物線y2=2x于A(x1,y1),B(x2,y2)兩點.
(1)求x1x2與y1y2的值;
(2)求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,O為坐標原點,點F為拋物線C1:x2=2py(p>0)的焦點,且拋物線C1上點P處的切線與圓C2:x2+y2=1相切于點Q.
(Ⅰ)當直線PQ的方程為x-y-
2
=0時,求拋物線C1的方程;
(Ⅱ)當正數(shù)p變化時,記S1,S2分別為△FPQ,△FOQ的面積,求
S1
S2
的最小值.

查看答案和解析>>

同步練習冊答案