【題目】已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).

1)求曲線處的切線方程;

2)設(shè),求函數(shù)的單調(diào)區(qū)間;

3)設(shè),求證:當(dāng)時(shí),函數(shù)恰有2個(gè)不同零點(diǎn).

【答案】12)單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.3)證明見(jiàn)解析

【解析】

1)由,得,所以,即可求得答案;

2,根據(jù)導(dǎo)數(shù),分別討論函數(shù)的單調(diào)性,即可求得函數(shù)的單調(diào)區(qū)間;

3)因?yàn)?/span>,設(shè),得,令,當(dāng),,結(jié)合已知和零點(diǎn)定義,即可求得答案.

1)由,得,

,

曲線處的切線方程為.

2,

當(dāng)時(shí),,

函數(shù)的單調(diào)增區(qū)間為.

當(dāng)時(shí),,

,得

,得,

函數(shù)的單調(diào)增區(qū)間為;單調(diào)減區(qū)間為.

綜上所述,函數(shù)的單調(diào)增區(qū)間為;

函數(shù)的單調(diào)減區(qū)間為.

3)由題意知,,

,

當(dāng)時(shí),,

上單調(diào)遞增,

,,

存在唯一的,使得,

當(dāng)時(shí),,

上單調(diào)遞減,

當(dāng)時(shí),,

上單調(diào)遞增,

的唯一極值點(diǎn),

,

當(dāng)時(shí),,

上單調(diào)遞減,

即當(dāng)時(shí),,即,

,

函數(shù)上有唯一的零點(diǎn),

上有唯一的零點(diǎn),

函數(shù)恰有2個(gè)不同零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給圖中AB,C,D,E,F六個(gè)區(qū)域進(jìn)行染色,每個(gè)區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】西光廠眼鏡車間接到一批任務(wù),需要加工6000個(gè)型零件和2000個(gè)型零件.這個(gè)車間有214名工人,他們每一個(gè)人加工5個(gè)型零件的時(shí)間可以加工3個(gè)型零件.將這些工人分成兩組,兩組同時(shí)工作,每組加工一種型號(hào)的零件,為了在最短的時(shí)間內(nèi)完成這批任務(wù),應(yīng)怎樣分組?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)若,求的值;

(2)若對(duì)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為抗擊疫情,中國(guó)人民心連心,向世界展示了中華名族的團(tuán)結(jié)和偉大,特別是醫(yī)護(hù)工作者被人們尊敬的稱為最美逆行者,各地醫(yī)務(wù)工作者主動(dòng)支援湖北武漢.現(xiàn)有7名醫(yī)學(xué)專家被隨機(jī)分配到雷神山、火神山兩家醫(yī)院.

1)求7名醫(yī)學(xué)專家中恰有兩人被分配到雷神山醫(yī)院的概率;

2)若要求每家醫(yī)院至少一人,設(shè),分別表示分配到雷神山、火神山兩家醫(yī)院的人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),給出下列四個(gè)結(jié)論:

① 函數(shù)的最小正周期是;

② 函數(shù)在區(qū)間上是減函數(shù);

③ 函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱;

④ 函數(shù)的圖像可由函數(shù)的圖像向右平移個(gè)單位,再向下平移1個(gè)單位得到.其中正確結(jié)論的個(gè)數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國(guó),緊跟黨走”為主題的黨史知識(shí)競(jìng)賽。從參加競(jìng)賽的學(xué)生中,隨機(jī)抽取40名學(xué)生,將其成績(jī)分為六段,,,,,到如圖所示的頻率分布直方圖.

1)求圖中的值及樣本的中位數(shù)與眾數(shù);

2)若從競(jìng)賽成績(jī)?cè)?/span>兩個(gè)分?jǐn)?shù)段的學(xué)生中隨機(jī)選取兩名學(xué)生,設(shè)這兩名學(xué)生的競(jìng)賽成績(jī)之差的絕對(duì)值不大于分為事件,求事件發(fā)生的概率.

3)為了激勵(lì)同學(xué)們的學(xué)習(xí)熱情,現(xiàn)評(píng)出一二三等獎(jiǎng),得分在內(nèi)的為一等獎(jiǎng),得分在內(nèi)的為二等獎(jiǎng), 得分在內(nèi)的為三等獎(jiǎng).若將頻率視為概率,現(xiàn)從考生中隨機(jī)抽取三名,設(shè)為獲得三等獎(jiǎng)的人數(shù),求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),且G具有下列兩條性質(zhì):(1)對(duì)任何,恒有;(2).試證明:G中奇數(shù)的個(gè)數(shù)是4的倍數(shù),且G中所有數(shù)的平方和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)已知兩個(gè)變量線性相關(guān),若它們的相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值越接近于1.

2)線性回歸直線必過(guò)點(diǎn);

3)對(duì)于分類變量AB的隨機(jī)變量,越大說(shuō)明AB有關(guān)系的可信度越大.

4)在刻畫回歸模型的擬合效果時(shí),殘差平方和越小,相關(guān)指數(shù)的值越大,說(shuō)明擬合的效果越好.

5)根據(jù)最小二乘法由一組樣本點(diǎn),求得的回歸方程是,對(duì)所有的解釋變量,的值一定與有誤差.

以上命題正確的序號(hào)為____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案