已知函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,其圖象與軸交于三點,其中點的坐標為
(1)求的值;
(2)求的取值范圍;
(3)求的取值范圍.

(1)(2)(3)的取值范圍是

解析試題分析:(1)函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減的一個極值點,,可求解;
(2)導數(shù)的應用
(3)由(2)的結論,,求解.
試題解析:(1)由已知得:,由,函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,的一個極值點,由得:
(2)由(1)得:
得:,,
得:

由已知得:,
所以,所求的的取值范圍是:
(3)設,


,



,
所以,的取值范圍是
考點:三次函數(shù)的圖象與性質(zhì)和導數(shù)的應用

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)若,求曲線處的切線方程;
(2)求的單調(diào)區(qū)間;
(3)設,若對任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知曲線.
(1)若曲線C在點處的切線為,求實數(shù)的值;
(2)對任意實數(shù),曲線總在直線:的上方,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),且是函數(shù)的一個極小值點.
(1)求實數(shù)的值;
(2)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù)
(1)若關于x的不等式有實數(shù)解,求實數(shù)m的取值范圍;
(2)設,若關于x的方程至少有一個解,求p的最小值.
(3)證明不等式:    

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)(,為自然對數(shù)的底數(shù)).
(1)若曲線在點處的切線平行于軸,求的值;
(2)求函數(shù)的極值;
(3)當的值時,若直線與曲線沒有公共點,求的最大值.
(注:可能會用到的導數(shù)公式:;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),函數(shù)
⑴當時,求函數(shù)的表達式;
⑵若,函數(shù)上的最小值是2 ,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

定義在定義域內(nèi)的函數(shù),若對任意的都有,則稱函數(shù)為“媽祖函數(shù)”,否則稱“非媽祖函數(shù)”.試問函數(shù),()是否為“媽祖函數(shù)”?如果是,請給出證明;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ax2-(4a+2)x+4lnx,其中a≥0.
(1)若a=0,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習冊答案