已知橢圓的焦點是F1(0,-1)、F2(0,1),P是橢圓上一點,并且|F1F2|是|PF1|與|PF2|的等差中項,則橢圓的方程是
 
考點:橢圓的簡單性質(zhì),橢圓的標(biāo)準(zhǔn)方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:根據(jù)|F1F2|是|PF1|與|PF2|的等差中項,可得2|F1F2|=|PF1|+|PF2|,且|F1F2|=2c,|PF1|+|PF2|=2a,就可求出a,b的值,再判斷焦點所在坐標(biāo)軸,就可得到橢圓方程.
解答: 解:∵|F1F2|是|PF1|與|PF2|的等差中項,
∴2|F1F2|=|PF1|+|PF2|,
∴2|F1F2|=|PF1|+|PF2|
又∵|F1F2|=2c,|PF1|+|PF2|=2a,∴4c=2a,a=2c
∵橢圓的兩焦點為F1(0,-1),F(xiàn)2(0,1),∴c=1,
∴a=2,b2=a2-c2=3,
又∵橢圓的焦點在y軸上,
∴橢圓方程為
x2
3
+
y2
4
=1

故答案為:
x2
3
+
y2
4
=1
點評:本題主要考查了應(yīng)用橢圓的定義以及等差中項的概念求橢圓方程,關(guān)鍵是求a,b的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,上頂點為A,點B滿足
BF1
=
F1F2
AB
AF2
=0.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)P是過A、B、F2三的圓上的點,若△AF1F2的面積為
3
,求P到直線l:x-
3
y-3=0距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=2x3-6x2+m(m為常數(shù))在[-2,2]上有最大值3,那么此函數(shù)在[-2,2]上的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)條件 p:A={x|x2-3x-4<0},條件q:B={x|-a≤x≤a+1},若p是q的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:關(guān)于x的不等式x2+(a-1)x+a2>0的解集為R.
命題q:方程
x2
a2+a
+
y2
a2-1
=1表示雙曲線.
若命題“p∨q”為真命題,命題“p∧q”為假命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過橢圓
x2
16
+
y2
4
=1內(nèi)一點M(2,1)的一條直線與橢圓交于A,B兩點,如果弦AB被M點平分,那么這樣的直線是否存在?若存在,求其方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知動點M(x,y)到直線l:x=4的距離是它到點M(1,0)的距離的2倍.求動點M的軌跡C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,x2+ax-4a<0”為假命題,是“-16≤a≤0”的
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
,
b
滿足
a
=(4,3),2
a
+
b
=(3,18),則向量
a
b
夾角的余弦值為
 

查看答案和解析>>

同步練習(xí)冊答案