設(shè)集合W是滿足下列兩個條件的無窮數(shù)列的集合:①對任意,恒成立;②對任意,存在與n無關(guān)的常數(shù)M,使恒成立.
(1)若是等差數(shù)列,是其前n項和,且試探究數(shù)列與集合W之間的關(guān)系;
(2)設(shè)數(shù)列的通項公式為,且,求M的取值范圍.
(1);(2).
【解析】
試題分析:(1)先根據(jù)條件,利用等差數(shù)列的性質(zhì)得到的前n項和,然后檢驗其是否滿足①②條件即可;(2)由數(shù)列的通項公式經(jīng)作差可知,當(dāng)時,,此時,數(shù)列單調(diào)遞減,當(dāng)時,,即,從而得到數(shù)列中的最大項為,由恒成立,從而知的取值范圍是.
試題解析:(1)設(shè)等差數(shù)列的公差是,則
解得 1分
∴ (3分)
∴
∴,適合條件①
又,
∴當(dāng)或時,取得最大值20,即,適合條件②.
綜上, (6分)
(2)∵,
∴當(dāng)時,,此時,數(shù)列單調(diào)遞減; 9分
當(dāng)時,,即, 10分
因此,數(shù)列中的最大項是, 11分
∴,即M的取值范圍是. 12分
考點:1.新概念的理解;2.等差數(shù)列的性質(zhì);3.數(shù)列的單調(diào)性.
科目:高中數(shù)學(xué) 來源: 題型:
an+an+2 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
an+an+2 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
an+an+2 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
an+an+2 |
2 |
1 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
an+an+2 |
2 |
1 |
5 |
2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com