已知f(x)=
ax+3
x-1
的反函數(shù)是f-1(x),函數(shù)y=g(x)的圖象與y=f-1(x+1)的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng),且g(3)=
7
2
則實(shí)數(shù)a的值是( 。
分析:根據(jù)函數(shù)y=g(x)的圖象與y=f-1(x+1)的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng)可得函數(shù)y=g(x)與y=f-1(x+1)互為反函數(shù),根據(jù)反函數(shù)的性質(zhì)建立關(guān)系式,從而求出所求.
解答:解:∵函數(shù)y=g(x)的圖象與y=f-1(x+1)的圖象關(guān)于直線(xiàn)y=x對(duì)稱(chēng)
∴函數(shù)y=g(x)與y=f-1(x+1)互為反函數(shù)
而g(3)=
7
2
則y=f-1(x+1)過(guò)點(diǎn)(
7
2
,3)
即f-1
7
2
+1)=f-1
9
2
)=3
則f(3)=
9
2
=
3a+3
2

∴a=2
故選B.
點(diǎn)評(píng):本題主要考查了反函數(shù),以及反函數(shù)的性質(zhì),同時(shí)考查了轉(zhuǎn)化的思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax+a-x(a>0且a≠1),
(1)證明函數(shù)f ( x )的圖象關(guān)于y軸對(duì)稱(chēng);
(2)判斷f(x)在(0,+∞)上的單調(diào)性,并用定義加以證明;
(3)當(dāng)x∈[1,2]時(shí)函數(shù)f (x )的最大值為
103
,求此時(shí)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax+b(a>0且a≠1,b為常數(shù))的圖象經(jīng)過(guò)點(diǎn)(1,1)且0<f(0)<1,記m=
1
2
[f-1(x1)+f-1(x2)]
,n=f-1(
x1+x2
2
)
(x1、x2是兩個(gè)不相等的正實(shí)數(shù)),試比較m、n的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知f(x)=ax+a-x,若f(1)=3,,求f(2)的值.
(2)設(shè)函數(shù)f(x)=log3(ax-bx),且f(1)=1,f(2)=log312.求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=ax(a>1),g(x)=bx(b>1),當(dāng)f(x1)=g(x2)=2時(shí),有x1>x2,則a,b的大小關(guān)系是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•新疆模擬)已知f(x)=ax-lnx,x∈(0,e],g(x)=
lnx
x
,其中e是自然對(duì)數(shù)的底,a∈R.
(Ⅰ)a=1時(shí),求f(x)的單調(diào)區(qū)間、極值;
(Ⅱ)是否存在實(shí)數(shù)a,使f(x)的最小值是3,若存在,求出a的值,若不存在,說(shuō)明理由;
(Ⅲ)在(1)的條件下,求證:f(x)>g(x)+
1
2

查看答案和解析>>

同步練習(xí)冊(cè)答案