已知拋物線,過(guò)軸上一點(diǎn)的直線與拋物線交于點(diǎn)兩點(diǎn)。

證明,存在唯一一點(diǎn),使得為常數(shù),并確定點(diǎn)的坐標(biāo)。

 

【答案】

時(shí),為定值,此時(shí)。

【解析】

試題分析:設(shè)),過(guò)點(diǎn)直線方程為,交拋物線于聯(lián)立方程組

由韋達(dá)定理得…5分

使用,              7分

,                    12分

所以,時(shí),為定值,此時(shí)。                17分

考點(diǎn):直線與拋物線的位置關(guān)系,兩點(diǎn)間的距離公式。

點(diǎn)評(píng):中檔題,涉及直線與圓錐曲線位置關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,應(yīng)用韋達(dá)定理,簡(jiǎn)化解題過(guò)程 。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知直線L:x=my+1過(guò)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點(diǎn)F,且交橢圓C于A,B兩點(diǎn),點(diǎn)A,F(xiàn),B在直線G:x=a2上的射影依次為點(diǎn)D,K,E,
(1)已知拋物線x2=4
3
y
的焦點(diǎn)為橢圓C的上頂點(diǎn).
①求橢圓C的方程;
②若直線L交y軸于點(diǎn)M,且
MA
=λ1
AF
,
MB
=λ2
BF
,當(dāng)m變化時(shí),求λ12的值;
(2)連接AE,BD,試探索當(dāng)m變化時(shí),直線AE、BD是否相交于一定點(diǎn)N?若交于定點(diǎn)N,請(qǐng)求出N點(diǎn)的坐標(biāo)并給予證明;否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,P(2,0)為定點(diǎn).
(Ⅰ)若點(diǎn)P為拋物線的焦點(diǎn),求拋物線C的方程;
(Ⅱ)若動(dòng)圓M過(guò)點(diǎn)P,且圓心M在拋物線C上運(yùn)動(dòng),點(diǎn)A、B是圓M與y軸的兩交點(diǎn),試推斷是否存在一條拋物線C,使|AB|為定值?若存在,求這個(gè)定值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)坐標(biāo)為F(2,0),點(diǎn)P的坐標(biāo)為(m,0)(m≠0),設(shè)過(guò)點(diǎn)P的直線l交拋物線C于A,B兩點(diǎn),點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為點(diǎn)Q.
(1)當(dāng)直線l的斜率為1時(shí),求△QAB的面積關(guān)于m的函數(shù)表達(dá)式.
(2)試問(wèn)在x軸上是否存在一定點(diǎn)T,使得TA,TB與x軸所成的銳角相等?若存在,求出定點(diǎn)T 的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•黑龍江一模)已知拋物線y2=2px(p>0),F(xiàn)為其焦點(diǎn),l為其準(zhǔn)線,過(guò)F任作一條直線交拋物線于A、B兩點(diǎn),A'、B'分別為A、B在l上的射影,M為A'B'的中點(diǎn),給出下列命題:
①A'F⊥B'F;
②AM⊥BM;
③A'F∥BM;
④A'F與AM的交點(diǎn)在y軸上;
⑤AB'與A'B交于原點(diǎn).
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知線段AB過(guò)軸上一點(diǎn),斜率為,兩端點(diǎn)A,B到軸距離之差為,

(1)求以O(shè)為頂點(diǎn),軸為對(duì)稱軸,且過(guò)A,B兩點(diǎn)的拋物線方程;

(2)設(shè)Q為拋物線準(zhǔn)線上任意一點(diǎn),過(guò)Q作拋物線的兩條切線,切點(diǎn)分別為M,N,求證:直線MN過(guò)一定點(diǎn);

查看答案和解析>>

同步練習(xí)冊(cè)答案