已知橢圓C的中心在原點,離心率為
3
2
,短軸在y軸上且長度大于1,定點A(0,
3
2
)到橢圓C點的最遠距離為
7
,求橢圓的標準方程.
考點:橢圓的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設橢圓的標準方程為
x2
a2
+
y2
b2
=1
(2a>2b>1).由
c
a
=
3
2
可得a=2b.橢圓的方程可化為x2+4y2=4b2.設橢圓C上的任意一點P(x,y).可得|PA|2=x2+(y-
3
2
)2
=-3(y+
1
2
)2
+4b2+3.由于b>
1
2
,利用二次函數(shù)的單調(diào)性即可得出.
解答: 解:設橢圓的標準方程為
x2
a2
+
y2
b2
=1
(2a>2b>1).
c
a
=
3
2
可得1-
b2
a2
=
3
4
,解得a=2b.
∴橢圓的方程可化為x2+4y2=4b2
設橢圓C上的任意一點P(x,y).
|PA|2=x2+(y-
3
2
)2
=4b2-4y2+y2-3y+
9
4
=-3(y+
1
2
)2
+4b2+3.
∵2b>1,∴b>
1
2

∴當y=-
1
2
時,|PA|取得最大值
7

∴4b2+3=7,解得b=1.
∴橢圓的標準方程為
x2
4
+y2=1
點評:本題考查了橢圓的標準方程及其性質(zhì)、兩點之間的距離公式、二次函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知全集U=R,集合A={x|0<x≤2},B={x|x<-3或x>1}
求:(1)A∩B       
(2)(∁UA)∩(∁UB)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二面角α-AB-β的平面角是銳角θ,α內(nèi)一點C到β的距離為3,點C到棱AB的距離為4,那么cosθ的值等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(x-1)ex-ax2,當a∈(2,3)時,求函數(shù)f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知一條曲線C在y軸右邊,C上每一點到點F(1,0)的距離減去它到y(tǒng)軸距離的差都是1.
(1)求曲線C的方程;
(2)是否存在實數(shù)m,使曲線C上總有不同的兩點關(guān)于直線y=x+m對稱?若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A,B是⊙0:x2+y2=4與x軸的兩個交點,C是⊙O上異于點A,B的任意一點,過點B作直線l的垂線BP,且與AC的延長線交于點P,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-2ax+2.
(1)當x∈(-
1
2
,+∞)時f(x)≥a恒成立,求a的取值范圍.
(2)當x∈[-1,+∞)時f(x)≥a恒成立,求a的取值范圍.
(3)若x∈[
3
2
,+∞)時f(x)≥a恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合I={x∈N*|1≤x≤5},給定k∈I,設函數(shù)f:I→I,滿足:對于任意大于k的正整數(shù)n(n∈I),f(n)=n-k.
(1)設k=1,且f為一一映射,則函數(shù)f在n=1處的函數(shù)值為
 

(2)設k=2,且當n≤2時,2≤f(n)≤3,則不同的函數(shù)f的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

即將開工的上海與周邊城市的城際列車路線將大大緩解交通的壓力,加速城市之間的流通.根據(jù)測算,如果一列火車每次拖4節(jié)車廂,每天能來回16次;如果一列火車每次拖7節(jié)車廂,每天能來回10次.每天來回次數(shù)t是每次拖掛車廂個數(shù)n的一次函數(shù).
(1)寫出n與t的函數(shù)關(guān)系式;
(2)每節(jié)車廂一次能載客110人,試問每次應拖掛多少節(jié)車廂才能使每天營運人數(shù)y最多?并求出每天最多的營運人數(shù)(注:營運人數(shù)指火車運送的人數(shù))

查看答案和解析>>

同步練習冊答案