設(shè)函數(shù)f(x)=|x+1|+|x+2|+…+|x+2010|+|x-1|+|x-2|+…+|x-2010|(x∈R)四位同學(xué)研究得出如下四個命題,其中真命題的有(  )個
①f(x)是偶函數(shù);
②f(x)在(0,+∞)單調(diào)遞增;
③不等式f(x)<2010×2011的解集為∅;
④關(guān)于實數(shù)a的方程f(a2-3a+2)=f(a-1)有無數(shù)解.
分析:對于①利用偶函數(shù)的定義可判斷;對于②正確;對于③研究函數(shù)的最小值為
2010×2011
2
=2010×2011,故可判斷;對于④由①②可知,a2-3a+2=a-1,∴a=1或a=3,故可得結(jié)論
解答:解:對于①f(-x)=f(x)∴正確;對于②,當(dāng)x在[-1,1]的時候,|x+1|+|x-1|就是x到-1的距離加上x到1的距離,由于x在-1和1之間,所以距離之和正好是2,同樣的,|x+2|+|x-2|正好是4,|x+2011|+|x-2011|正好是4022,即函數(shù)在[-1,1]上是常數(shù)函數(shù),故②錯誤;對于③,∵當(dāng)x=0時,函數(shù)的最小值為
2010×2011
2
=2010×2011,故正確對于④由①②可知,a2-3a+2=a-1,∴a=1或a=3,當(dāng)兩者不相等時,a=2,故④錯,
故選B.
點評:本題主要考查命題真假的判斷,解題的關(guān)鍵是正確理解函數(shù),研究其性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域為A,若存在非零實數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域為[0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實數(shù)m的取值范圍是( 。
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
,
10
]
D、[-
5
2
5
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案