函數(shù)y=2x-2和y=
13
x2的圖象如圖所示,其中有且只有X=x1,x2,x3時(shí),兩函數(shù)值相等,
且x1<0<x2<x3,0為坐標(biāo)原點(diǎn).現(xiàn)給出下列三個(gè)結(jié)論:
①當(dāng)x∈(-∞,-1)時(shí),2x-2<x2;
②x2∈(1,2);
③x3∈(4,5).其中正確結(jié)論的序號(hào)為
①②
①②
分析:先將函數(shù)圖象交點(diǎn)范圍問(wèn)題轉(zhuǎn)化為函數(shù)f(x)=2x-2-
1
3
x2的零點(diǎn)問(wèn)題,再利用零點(diǎn)存在性定理,判斷零點(diǎn)范圍即可作出正確選擇
解答:解:設(shè)函數(shù)f(x)=2x-2-
1
3
x2,
∵f(-1)=
1
8
-
1
3
<0,f(0)=
1
4
>0
∴f(x)的一個(gè)零點(diǎn)在(-1,0)上,即-1<x1<0,①正確;
∵f(1)=
1
2
-
1
3
>0,f(2)=1-
4
3
<0
∴1<x2<2,②正確
同理,f(4)=4-
16
3
<0,f(5)=8-
25
3
<0,f(6)=16-
36
3
>0
∴5<x3<6,③錯(cuò)誤
故答案為①②
點(diǎn)評(píng):本題主要考查了函數(shù)零點(diǎn)的存在性定理和零點(diǎn)范圍的判斷方法,函數(shù)零點(diǎn)問(wèn)題與函數(shù)圖象交點(diǎn)問(wèn)題間的聯(lián)系和相互轉(zhuǎn)化,一定的運(yùn)算能力和比較大小能力
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2x-2y=
1
3
x2
的圖象如圖所示,其中有且只有x=x1、x2、x3時(shí),兩函數(shù)數(shù)值相等,且x1<0<x2<x3,o為坐標(biāo)原點(diǎn).
(Ⅰ)請(qǐng)指出圖中曲線C1、C2分別對(duì)應(yīng)的函數(shù);
(Ⅱ)現(xiàn)給下列二個(gè)結(jié)論:
①當(dāng)x∈(-∞,-1)時(shí),2x-2
1
3
x2
;
②x2∈(1,2);  
請(qǐng)你判定是否成立,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)y=2x-2和y=
1
3
x2的圖象如圖所示,其中有且只有X=x1,x2,x3時(shí),兩函數(shù)值相等,
且x1<0<x2<x3,0為坐標(biāo)原點(diǎn).現(xiàn)給出下列三個(gè)結(jié)論:
①當(dāng)x∈(-∞,-1)時(shí),2x-2<x2
②x2∈(1,2);
③x3∈(4,5).其中正確結(jié)論的序號(hào)為_(kāi)_____.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省寧德市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)y=2x-2和y=x2的圖象如圖所示,其中有且只有X=x1,x2,x3時(shí),兩函數(shù)值相等,
且x1<0<x2<x3,0為坐標(biāo)原點(diǎn).現(xiàn)給出下列三個(gè)結(jié)論:
①當(dāng)x∈(-∞,-1)時(shí),2x-2<x2
②x2∈(1,2);
③x3∈(4,5).其中正確結(jié)論的序號(hào)為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年福建省寧德市高一(上)期末數(shù)學(xué)試卷(解析版) 題型:填空題

函數(shù)y=2x-2和y=x2的圖象如圖所示,其中有且只有X=x1,x2,x3時(shí),兩函數(shù)值相等,
且x1<0<x2<x3,0為坐標(biāo)原點(diǎn).現(xiàn)給出下列三個(gè)結(jié)論:
①當(dāng)x∈(-∞,-1)時(shí),2x-2<x2;
②x2∈(1,2);
③x3∈(4,5).其中正確結(jié)論的序號(hào)為   

查看答案和解析>>

同步練習(xí)冊(cè)答案