【題目】如圖,在四棱錐P-ABCD中,底面ABCD為矩形,平面PCD⊥平面ABCDAB=2,BC=1,EPB中點(diǎn).利用空間向量方法完成以下問(wèn)題:

1)求二面角E-AC-D的余弦值;

2)在棱PD上是否存在點(diǎn)M,使得?若存在,求的值;若不存在,說(shuō)明理由.

【答案】(1)(2)在棱上存在點(diǎn),使,且

【解析】

1)取的中點(diǎn),建立空間坐標(biāo)系,分別求出平面的法向量,再由二面角的向量公式即可求出;

2)假設(shè)存在點(diǎn),設(shè)出點(diǎn)的坐標(biāo),由三點(diǎn)共線得,,

可用表示出點(diǎn),再利用,求出,滿足即可,即得的值.

1)取的中點(diǎn),連結(jié),.因?yàn)榈酌?/span>為矩形,所以.因?yàn)?/span>,,所以,所以.

又因?yàn)槠矫?/span>PCD⊥平面ABCD,平面平面PCD平面ABCD=CD.

所以PO⊥平面ABCD,

如圖,建立空間直角坐標(biāo)系,,

設(shè)平面的法向量為

所以,則,所以.

平面的法向量為,則.

如圖可知二面角為鈍角,所以二面角的余弦值為.

2)在棱上存在點(diǎn),使.設(shè),.

因?yàn)?/span>,所以.

.因?yàn)?/span>,所以.

所以,解得.

所以在棱上存在點(diǎn),使,且.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求不等式的解集;

2)若的圖像與軸圍成直角三角形,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,且長(zhǎng)度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.

(1)試寫(xiě)出直線的直角坐標(biāo)方程及曲線的普通方程;

(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)當(dāng)ab1時(shí),求函數(shù)fx)的圖象在點(diǎn)(e2,fe2))處的切線方程;

2)當(dāng)b1時(shí),若存在,使fx1f'x2+a成立,求實(shí)數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是等差數(shù)列,首項(xiàng)a1=1,且a3+1a2+1a4+2的等比中項(xiàng).

1)求數(shù)列{an}的通項(xiàng)公式;

2)設(shè)bn=,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】當(dāng)曲線與直線有兩個(gè)相異的交點(diǎn)時(shí),實(shí)數(shù)的取值范圍是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)若,解不等式

(Ⅱ)若不等式至少有一個(gè)負(fù)數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線CO為坐標(biāo)原點(diǎn),FC的右焦點(diǎn),過(guò)F的直線與C的兩條漸近線的交點(diǎn)分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)不等式組表示的區(qū)域?yàn)?/span>A,不等式組表示的區(qū)域?yàn)?/span>B

1)在區(qū)域A中任取一點(diǎn)(x,y),求點(diǎn)(x,y)∈B的概率;

2)若x、y分別表示甲、乙兩人各擲一次骰子所得的點(diǎn)數(shù),求點(diǎn)(xy)在區(qū)域B中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案