【題目】設(shè) 為橢圓 上任一點,, 為橢圓的焦點,,離心率為 .
(1)求橢圓的標準方程;
(2)直線 經(jīng)過點 ,且與橢圓交于 , 兩點,若直線 ,, 的斜率依次成等比數(shù)列,求直線 的方程.
【答案】(1)(2) 或 .
【解析】試題分析:(1)由,,運用橢圓的定義可得,由離心率公式可得,再由的關(guān)系可得,從而得到橢圓方程;(2)由直線 經(jīng)過點 ,可知,,設(shè)點 ,,由 消 ,得 ,利用韋達定理和等比中項的性質(zhì),化簡整理可得的值,進而得到所求直線方程.
試題解析:(1) 由橢圓的定義可得 ,可得 ,
由 ,可得 ,,
則橢圓方程為 ;
(2) 由直線 經(jīng)過點 ,可知,,
設(shè)點 ,,
由 消 ,得 ,
由直線與橢圓交于不同的兩點,可得 ,解得 ,
由韋達定理得,,,
由題意知,,
即
所以 ,即 ,
即 ,即為 ,
所以直線 的方程為 或 .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面結(jié)論正確的是( )
①“所有2的倍數(shù)都是4的倍數(shù),某數(shù)是2的倍數(shù),則一定是4的倍數(shù)”,這是三段論推理,但其結(jié)論是錯誤的.
②在類比時,平面中的三角形與空間中的平行六面體作為類比對象較為合適.
③由平面三角形的性質(zhì)推測空間四面體的性質(zhì),這是一種合情推理.
④一個數(shù)列的前三項是1,2,3,那么這個數(shù)列的通項公式必為.
A. ①③ B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為坐標原點,橢圓: 的左焦點是,離心率為,且上任意一點到的最短距離為.
(1)求的方程;
(2)過點的直線(不過原點)與交于兩點、, 為線段的中點.
(i)證明:直線與的斜率乘積為定值;
(ii)求面積的最大值及此時的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題恒成立;命題方程表示雙曲線.
(1)若命題為真命題,求實數(shù)的取值范圍;
(2)若命題“”為真命題,“”為假命題,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電力公司為了制定節(jié)電方案,需要了解居民用電情況,通過隨機抽樣,電力公司獲得了戶居民的月平均用電量,分為六組制出頻率分布表和頻率分布直方圖(如圖所示).
組號 | 分組 | 頻數(shù) | 頻率 |
(1)求, 的值;
(2)為了解用電量較大的用戶用電情況,在第、兩組用分層抽樣的方法選取戶.
①求第、兩組各取多少戶?
②若再從這戶中隨機選出戶進行入戶了解用電情況,求這戶中至少有一戶月平均用電量在范圍內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一網(wǎng)站營銷部為統(tǒng)計某市網(wǎng)友2017年12月12日在某網(wǎng)店的網(wǎng)購情況,隨機抽查了該市60名網(wǎng)友在該網(wǎng)店的網(wǎng)購金額情況,如表:
網(wǎng)購金額 (單位:千元) | 頻數(shù) | 頻率 |
3 | ||
9 | ||
15 | ||
18 | ||
合計 | 60 |
若將當(dāng)日網(wǎng)購金額不小于2千元的網(wǎng)友稱為“網(wǎng)購達人”,網(wǎng)購金額小于2千元的網(wǎng)友稱為“網(wǎng)購探者”,已知“網(wǎng)購達人”與“網(wǎng)購探者”人數(shù)的比例為.
(1)確定,,,的值,并補全頻率分布直方圖;
(2)試根據(jù)頻率分布直方圖估算這60名網(wǎng)友當(dāng)日在該網(wǎng)店網(wǎng)購金額的平均數(shù)和中位數(shù);若平均數(shù)和中位數(shù)至少有一個不低于2千元,則該網(wǎng)店當(dāng)日評為“皇冠店”,試判斷該網(wǎng)店當(dāng)日能否被評為“皇冠店”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),則下列命題中正確的個數(shù)是( )
①當(dāng)時,函數(shù)在上是單調(diào)增函數(shù);
②當(dāng)時,函數(shù)在上有最小值;
③函數(shù)的圖象關(guān)于點對稱;
④方程可能有三個實數(shù)根.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com