已知函數(shù)f(x)=x3-9x2cosα+48xcosβ+18sin2α,g(x)=f'(x),且對任意的實數(shù)t均有g(shù)(1+cost)≥0,g(3+sint)≤0.
(I)求函數(shù)f(x)的解析式;
(II)若對任意的m∈[-26,6],恒有f(x)≥x2-mx-11,求x的取值范圍.
【答案】
分析:(1)先求出f'(x),即g(x),它是關(guān)于x的二次函數(shù),對任意的實數(shù)t均有g(shù)(1+cost)≥0,g(3+sint)≤0
可先求出1+cost和3+sint的范圍,轉(zhuǎn)化為g(x)在某些區(qū)間上恒成立,結(jié)合二次函數(shù)的圖象確定g(x)應(yīng)滿足的條件.
(2)由題意對任意的m∈[-26,6]恒成立,只要把式子看成關(guān)于m的不等式恒成立即可.
解答:解:(1)g(x)=f'(x)=3x
2-18xcosα+48cosβ
對任意的實數(shù)t,1+cost∈[0,2],3+sint∈[2,4].
對任意的實數(shù)t有g(shù)(1+cost)≥0,g(3+sint)≤0
即對任意的實數(shù)x∈[0,2]有g(shù)(x)≥0,x∈[2,4]時有g(shù)(x)≤0
∴
即
,解得
所以f(x)=x
3-9x
2+24x
(2)令g(m)=f(x)-x
2+mx+11=xm+x
3-10x
2+24x+11
由題意只要
即
,解得
點評:本題考查待定系數(shù)法求解析式、不等式恒成立問題,綜合性強,難度較大.