已知a、b∈R,且a+b+1=0,則(a-2)2+(b-3)2的最小值是
 
考點(diǎn):點(diǎn)到直線的距離公式
專題:數(shù)形結(jié)合
分析:a+b+1=0看作直線,(a-2)2+(b-3)2看作點(diǎn)(a,b)與點(diǎn)(2.3)的距離的平方
解答: 解:∵a、b∈R,且a+b+1=0,則(a-2)2+(b-3)2看作點(diǎn)(a,b)與點(diǎn)(2.3)的距離的平方,
∴根據(jù)點(diǎn)到直線的距離可得:
|2+3+1|
2
=3
2

故答案為:18
點(diǎn)評(píng):本題考察了運(yùn)用幾何的方法解決代數(shù)問(wèn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿足
S8
S4
=17,則公比q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=Asin(ωx+φ),(A>0,ω>0,|φ|<
π
2
)的最小值是-2,在一個(gè)周期內(nèi)圖象最高點(diǎn)與最低點(diǎn)橫坐標(biāo)差是3π,又:圖象過(guò)點(diǎn)(0,1).求
(1)函數(shù)解析式;
(2)函數(shù)的最大值、以及達(dá)到最大值時(shí)x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=loga[(
1
a
-2)x+1]的區(qū)間[1,2]上恒為正值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x≤2,求|x-3|-|x+2|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓內(nèi)接四邊形ABCD中,AB=3,BC=4,CD=5,AD=6,則cosA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}滿足an+1+an-1=2an(n≥2),Sn是數(shù)列{an}的前n項(xiàng)和,S9=99,a10=21.
(1)求數(shù)列{an}的前n項(xiàng)和Sn
(2)設(shè)Tn=
1
S1
+
1
S2
+…+
1
Sn
,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2+2x+a
x
,x∈(1,+∞).
(1)當(dāng)a=0.5時(shí),求函數(shù)的最小值;
(2)若對(duì)任意x∈[1,+∞),f(x)>0恒成立,試求a的取值范圍;
(3)若對(duì)任意x∈[1,+∞),f(x)>a恒成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)P(x,y)是橢圓
x2
25
+
y2
16
=1上的點(diǎn),且P的縱坐標(biāo)y≠0,點(diǎn)A(-5,0),B(5,0),試判斷kPA×kPB(k為斜率)是否為定值,若是定值,求出該定值,若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案