(本小題滿分12分) 函數(shù)是定義在(-1,1)上的奇函數(shù),且
(1)求函數(shù)的解析式
(2)利用定義證明在(-1,1)上是增函數(shù)
(3)求滿足的范圍

解:(1)是定義在(-1,1)上的奇函數(shù)
解得, ………………………………………………………1分


  ……………………………………………………………………………3分
函數(shù)的解析式為:    ………………………………4分
(2)證明:設(shè),則           ………………………………5分

………………………………6分


 
在(-1,1)上是增函數(shù)             ………………………………8分
(3)  ………………………………9分
        ………………………………10分
在(-1,1)上是增函數(shù)

       …………………………………………………………12分

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=3x+2,x∈[-1,2],證明該函數(shù)的單調(diào)性并求出其最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù),若不等式的解集為(-1,3)。
(1)求的值;
(2)若函數(shù)上的最小值為1,求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
已知函數(shù)且存在使
(I)證明:是R上的單調(diào)增函數(shù);
(II)設(shè)其中 
證明:
(III)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù) 
(1)當(dāng)時(shí),求函數(shù)的最大值和最小值;
(2)求實(shí)數(shù)的取值范圍,使在區(qū)間上是單調(diào)減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知: 是定義在區(qū)間上的奇函數(shù),且.若對于任意的時(shí),都有
(1)解不等式
(2)若對所有恒成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)已知函數(shù)
(1)求函數(shù)的定義域;
(2)求函數(shù)的零點(diǎn);
(3)若函數(shù)的最小值為-4,求a的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分10分)已知函數(shù),求函數(shù),的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;
(2)在(1)的條件下,求函數(shù)的值域

查看答案和解析>>

同步練習(xí)冊答案