已知
(1)若時,求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)上是減函數(shù),求實(shí)數(shù)的取值范圍;
(3)令是否存在實(shí)數(shù),當(dāng)是自然對數(shù)的底)時,函數(shù)的最小值是3,
若存在,求出的值;若不存在,說明理由.
(1);(2);(3)存在,.

試題分析:(1)時,利用求導(dǎo)法則得到的導(dǎo)函數(shù),計算知,即切線斜率為1,再得到,從而通過直線的點(diǎn)斜式方程得到所求切線方程;(2)函數(shù)上是減函數(shù),即導(dǎo)函數(shù)上是恒小于或等于0.,在上分母恒為正,所以分子,令,則為開口向上的二次函數(shù).所以本題轉(zhuǎn)化為二次函數(shù)在閉區(qū)間的最值問題.,故兩個可能的最大值,得實(shí)數(shù)的取值范圍;(3)對求導(dǎo),討論的范圍,研究導(dǎo)數(shù)的正負(fù)從而確定上的單調(diào)性,得到其最小值,由條件最小值是3得到的值,注意此時還要判斷是否在所討論的范圍內(nèi),若不在則要予以舍去.
試題解析:(1)當(dāng)時,        1分
    函數(shù)在點(diǎn)處的切線方程為    3分
(2)函數(shù)上是減函數(shù)
上恒成立                     4分
,有                            6分
                                                            7分
(3)假設(shè)存在實(shí)數(shù),使上的最小值是3
                                              8分
當(dāng)時,上單調(diào)遞減,
(舍去)                                                    10分
當(dāng)時,即,上恒成立,上單調(diào)遞減
,(舍去)                       11分
當(dāng)時,即時,令,得;,得
上單調(diào)遞減,在上單調(diào)遞增
,滿足條件                     13分
綜上所述,存在實(shí)數(shù),使上的最小值是3     14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(Ⅰ)設(shè)(其中的導(dǎo)函數(shù)),求的最大值;
(Ⅱ)求證:當(dāng)時,有;
(Ⅲ)設(shè),當(dāng)時,不等式恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù) 
(1)證明 當(dāng),時,
(2)討論在定義域內(nèi)的零點(diǎn)個數(shù),并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)().
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,取得極值.
① 若,求函數(shù)上的最小值;
② 求證:對任意,都有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(Ⅰ)求的極值;
(Ⅱ)當(dāng)時,若不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的單調(diào)減區(qū)間(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)上的導(dǎo)函數(shù)為,且不等式恒成立,又常數(shù),滿足,則下列不等式一定成立的是        .
;②;③;④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)的導(dǎo)函數(shù)為,對任意都有成立,則(  )
A.B.
C.D.的大小不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù) 在區(qū)間[-2,2]的最大值為20,求它在該區(qū)間的最小值。

查看答案和解析>>

同步練習(xí)冊答案