如圖所示,已知a∥α,A是α的另一側(cè)的點(diǎn)B、C、DÎ a,線段AB、AC、AD交a于E、F、G,若BD=4,CF=4,AF=5,求EG的長(zhǎng).

答案:略
解析:

解:∵aα,EG=α∩平面ABD,

aEG,即BDEG

,則


提示:

由題中的已知條件可知:我們首先應(yīng)當(dāng)考慮使用直線和平面平行的性質(zhì),即要證明直線和直線平行,而其中的一條直線當(dāng)然是過(guò)已知直線的平面與已知平面的交線,如果有了兩直線平行的條件,在三角形中找比例關(guān)系就比較容易了.

在立體幾何中,要找到比例關(guān)系,通常的情況都是利用直線和平面平行的性質(zhì),這一點(diǎn)同學(xué)們要注意.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知A,B,C是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
上的三點(diǎn),其中點(diǎn)A的坐標(biāo)為(2
3
,0),BC
過(guò)橢圓的中心O,且AC⊥BC,|BC|=2|AC|.
(Ⅰ)求點(diǎn)C的坐標(biāo)及橢圓E的方程;
(Ⅱ)若橢圓E上存在兩點(diǎn)P,Q,使得∠PCQ的平分線總是垂直于x軸,試判斷向量
PQ
AB
是否共線,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)某村子的正西是一片山區(qū).山腳下A處已建一處采石場(chǎng),村子的北邊有一池塘,南邊有一樹(shù)林,在B處是個(gè)石粉廠,在采石場(chǎng)采到的石料由公路ACEDB運(yùn)輸?shù)绞蹚S,如圖所示.已知A,C,D,B在一條直線上,AC=2km,CE=2km,ED=3km,DB=2km,∠CED=120°.
(I)求CD的長(zhǎng).
(II)在運(yùn)作了一段時(shí)間后,發(fā)現(xiàn)在運(yùn)輸車經(jīng)過(guò)公路CE,ED時(shí)對(duì)池塘有污染..需要另建公路ACMNB.為了不破壞樹(shù)林,必須要求CM=3km,∠CMN=135°,∠MNB=150°MN∥AC.求建這條新的公路中MN的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

水平放置的△ABC的斜二測(cè)直觀圖如圖所示,已知A′C′=3,B′C′=2,則AB邊上的中線的實(shí)際長(zhǎng)度為
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且
AC
BC
=0
,|BC|=2|AC|.
(I)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;
(II)如果橢圓上有兩點(diǎn)P、Q,使∠PCQ的平分線垂直于AO,證明:存在實(shí)數(shù)λ,使
PQ
AB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,已知A,B,C是圓O上三個(gè)點(diǎn),AB弧等于BC弧,D為弧AC上一點(diǎn),過(guò)點(diǎn)A做圓O的切線交BD延長(zhǎng)線于E
(1)求證:AB平分∠CAE;
(2)若AD•BE=2
6
,∠ADE=30°
,求△ABE的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案