精英家教網 > 高中數學 > 題目詳情
如圖,四棱錐的底面為矩形,是四棱錐的高,
所成角為, 的中點,上的動點.
(Ⅰ)證明:;
(Ⅱ)若,求直線與平面所成角的大小.
(Ⅰ) 建立如圖所示空間直角坐標系.

,
,,
于是,,
,
所以.………………6分
(Ⅱ)若,則,
設平面的法向量為
,得:,令,則,
于是,而
與平面所成角為,所以,
所以與平面所成角
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,四棱錐S﹣ABCD的底面為正方形,SD⊥平面ABCD,SD=AD=2,請建立空間直角坐標系解決下列問題.

(1)求證:;(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,直三棱柱ABC-A1B1C1底面△ABC中,CA=CB=1,
∠BCA=90°,棱AA1=2,M是A1B1的中點.
(1)求cos(,)的值;
(2)求證:A1B⊥C1M.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知某幾何體的直觀圖和三視圖如下圖所示, 其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.(1)證明:⊥平面(2)求平面與平面所成角的余弦值;

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在正四棱柱中,,的中點,.
(Ⅰ) 證明:∥平面;
(Ⅱ)證明:平面.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知平行四邊形ABCD和矩形ACEF所在的平面互相垂直,AB=1,AD=2,(I)求證:AC⊥BF;
(II)若二面角F—BD—A的大小為60°,求a的值

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖直角梯形OABC中,,SO=1,以OC、OA、OS分別為x軸、y軸、z軸建立直角坐標系O-xyz.
(Ⅰ)求的余弦值;
(Ⅱ)設

②設OA與平面SBC所成的角為,求。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在直四棱柱ABCD-ABCD中,底面ABCD為等腰梯形,AB//CD,AB="4," BC="CD=2, " AA="2, " E、E、F分別是棱AD、AA、AB的中點。
(1)  證明:直線EE//平面FCC;
求二面角B-FC-C的余弦值。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

如圖,在三棱錐D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E為BC的中點,F(xiàn)在棱AC上,且AF=3FC.

(1)求證AC⊥平面DEF;
(2)若M為BD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.
(3)求平面ABD與平面DEF所成銳二面角的余弦值。

查看答案和解析>>

同步練習冊答案