(本題滿分12分)如圖,在底面為直角梯形的四棱錐平面,,,

(Ⅰ)求證:

(Ⅱ)求直線與平面所成的角;

(Ⅲ)設(shè)點(diǎn)在棱上,  ,若∥平面,求的值.

 

【答案】

(Ⅰ)先根據(jù)證明,再證明從而得證。

(Ⅱ)

(Ⅲ)

【解析】【方法一】(1)證明:由題意知 則

(4分)

(2)∵,又平面.

∴平面平面.過(guò)//過(guò)點(diǎn),則∠為直線與平面所成的角. 在Rt△中,∠,

,∴∠.即直線與平面所成角為(8分)

(3)連結(jié),∵,

∥平面.

又∵∥平面,

∴平面∥平面,∴.

又∵

,即(12分)

【方法二】如圖,在平面ABCD內(nèi)過(guò)D作直線DF//AB,交BC于F,分別以DA、DF、DP所在的直線為x、y、z軸建立空間直角坐標(biāo)系.

(1)設(shè),則,

,∴     。4分)

(2)由(1)知.

由條件知A(1,0,0),B(1,,0),

.設(shè)

即直線.   (8分)

(3)由(2)知C(-3,,0),記P(0,0,a),則

,,,,

,所以

=

設(shè)為平面PAB的法向量,則,即,即.

 進(jìn)而得,

,得

 (12分)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014屆江西高安中學(xué)高二上期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點(diǎn).

(1)當(dāng)時(shí),求平面與平面的夾角的余弦值;

(2)當(dāng)為何值時(shí),在棱上存在點(diǎn),使平面?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省八市高三3月聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)如圖,在長(zhǎng)方體中,已知上下兩底面為正方形,且邊長(zhǎng)均為1;側(cè)棱,為中點(diǎn),中點(diǎn),上一個(gè)動(dòng)點(diǎn).

(Ⅰ)確定點(diǎn)的位置,使得

(Ⅱ)當(dāng)時(shí),求二面角的平

面角余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣西桂林中學(xué)高三7月月考試題理科數(shù)學(xué) 題型:解答題

(本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點(diǎn),F(xiàn)是AD的中點(diǎn).

 ⑴求異面直線PD與AE所成角的大。

 ⑵求證:EF⊥平面PBC ;

 ⑶求二面角F—PC—B的大。.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年湖南省招生統(tǒng)一考試文科數(shù)學(xué) 題型:解答題

 

(本題滿分12分)

如圖3,在圓錐中,已知的直徑的中點(diǎn).

(I)證明:

(II)求直線和平面所成角的正弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年海南省高三五校聯(lián)考數(shù)學(xué)(文) 題型:解答題

(本題滿分12分)

如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點(diǎn),SA=SB=SC。

   (1)求證:BC⊥平面SDE;

   (2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案