已知是二次函數(shù),不等式的解集是,且在點(diǎn)處的切線與直線平行.
(1)求的解析式;
(2)是否存在t∈N*,使得方程在區(qū)間內(nèi)有兩個(gè)不等的實(shí)數(shù)根?
若存在,求出t的值;若不存在,說明理由.

(1).
(2)存在唯一的自然數(shù),使得方程在區(qū)間內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根. 

解析試題分析:(1)根據(jù)是二次函數(shù),及不等式的解集是
可設(shè),. 再根據(jù)函數(shù)在切點(diǎn)的斜率就是該點(diǎn)處的導(dǎo)函數(shù)值,可建立
方程,解得.
(2)首先由(1)知,方程等價(jià)于方程.
構(gòu)造函數(shù),通過“求導(dǎo)數(shù)、求駐點(diǎn)、討論導(dǎo)數(shù)值的正負(fù)”明確函數(shù)的單調(diào)區(qū)間,通過計(jì)算,
認(rèn)識(shí)方程有實(shí)根的情況.
試題解析:(1)∵是二次函數(shù),不等式的解集是
∴可設(shè),.
.                                           2分
∵函數(shù)在點(diǎn)處的切線與直線平行,
.
,解得.
.                           5分
(2)由(1)知,方程等價(jià)于方程  6分
設(shè)
.                         7分
當(dāng)時(shí),,函數(shù)上單調(diào)遞減;
當(dāng)時(shí),,函數(shù)上單調(diào)遞增.   9分

∴方程在區(qū)間內(nèi)分別有唯一實(shí)數(shù)根,在區(qū)間
內(nèi)沒有實(shí)數(shù)根.                  12分
∴存在唯一的自然數(shù),使得方程
在區(qū)間內(nèi)有且只有兩個(gè)不等的根.      13分
考點(diǎn):二次函數(shù),導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a,b為常數(shù),a¹0,函數(shù)
(1)若a=2,b=1,求在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數(shù);
②若,,且在區(qū)間[1,2]上是增函數(shù),求由所有點(diǎn)形成的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)為常數(shù)),其圖象是曲線
(1)當(dāng)時(shí),求函數(shù)的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,若存在唯一的實(shí)數(shù),使得同時(shí)成立,求實(shí)數(shù)的取值范圍;
(3)已知點(diǎn)為曲線上的動(dòng)點(diǎn),在點(diǎn)處作曲線的切線與曲線交于另一點(diǎn),在點(diǎn)處作曲線的切線,設(shè)切線的斜率分別為.問:是否存在常數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)若曲線處的切線互相平行,求的值;
(Ⅱ)求的單調(diào)區(qū)間;
(Ⅲ)設(shè),若對(duì)任意,均存在,使得,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中為常數(shù).
(Ⅰ)若函數(shù)是區(qū)間上的增函數(shù),求實(shí)數(shù)的取值范圍;
(Ⅱ)若時(shí)恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)求的單調(diào)區(qū)間;
(2)若,在區(qū)間恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)=
(1)當(dāng)時(shí),求函數(shù)的單調(diào)增區(qū)間;
(2)求函數(shù)在區(qū)間上的最小值;
(3)在(1)的條件下,設(shè)=+,
求證:  (),參考數(shù)據(jù):。(13分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某建筑公司要在一塊寬大的矩形地面(如圖所示)上進(jìn)行開發(fā)建設(shè),陰影部分為一公共設(shè)施不能建設(shè)開發(fā),且要求用欄柵隔開(欄柵要求在直線上),公共設(shè)施邊界為曲線的一部分,欄柵與矩形區(qū)域的邊界交于點(diǎn)M、N,切曲線于點(diǎn)P,設(shè)

(I)將(O為坐標(biāo)原點(diǎn))的面積S表示成f的函數(shù)S(t);
(II)若,S(t)取得最小值,求此時(shí)a的值及S(t)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案