如果橢圓的兩焦點將長軸間的距離分成三等分,那么橢圓的離心率是
 
考點:橢圓的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:根據(jù)題意分別表示出橢圓的焦距和長軸間的距離的三分之一,建立等式求得a和c的關系,則橢圓的離心率可得.
解答: 解:長軸長為2a,兩焦點間的距離2c,
∵橢圓的兩焦點將其長軸三等分,
∴2c=
1
3
•2a,即:3c=a,
∴e=
1
3

故答案為:
1
3
點評:本題主要考查了橢圓的簡單性質.求橢圓的離心率問題,通常有兩種處理方法,一是求a,求c,再求比.二是列含a和c的齊次方程,再化含e的方程,解方程即可.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(Ⅰ)已知復數(shù)z=1-i(i是虛數(shù)單位),若z2+a
.
z
+b=3-3i,求實數(shù)a,b的值.
(Ⅱ)求二項式(
x
+
1
3x2
10展開式中的常數(shù)項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1
(1)求異面直線A1D與D1C所成的角;
(2)求證:面AA1C1C⊥面A1BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知ABCD-A1B1C1D1是底面為正方形的直四棱柱,且A1B1=1,AA1=2,求:
(1)異面直線BD與AB1所成的角的余弦值;
(2)四面體AB1D1C1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不論a,b為何實數(shù),直線(2a+b)x+(a+b)y+a-b=0均通過一定點,則此定點坐標是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若關于實數(shù)x的不等式|1-5x|+|1+3x|<a|x|無解,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A是橢圓
x2
a2
+
y2
b2
=1(a>b>0)上一點,F(xiàn)為橢圓的一個焦點,且AF⊥x 軸,|AF|=焦距,則橢圓的離心率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

罐中有6個紅球,4個白球,從中任取1球,記住顏色后再放回,連續(xù)摸取4次,設ξ為取得紅球的次數(shù),則ξ的期望E(ξ)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn=(-2)n,則|a1|+|a2|+|a3|+…+|an|=
 

查看答案和解析>>

同步練習冊答案