精英家教網 > 高中數學 > 題目詳情
設p:“a>3”q:“f(x)=x3-ax2+1在(0,2)上有唯一零點”,則p是q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件
考點:必要條件、充分條件與充要條件的判斷
專題:導數的綜合應用
分析:利用導數研究函數f(x)的單調性,結合充分條件和必要條件的定義進行判斷.
解答: 解:若a>3,則f′(x)=3x2-2ax=x(3x-2a)=3x(x-
2
3
a),
∴f′(x)<0,即函數函數f(x)=x3-ax2+1 在(0,2)上單調遞減,
而f(0)=1>0,f(2)=8-4a+1=9-4a<0,
∴函數f(x)=x3-ax2+1 在(0,2)上零點有一個.
當a=3時,f′(x)=3x2-6x=3x(x-2),
則當x=0時,函數f(x)取得極大值f(0)=1>0,
當x=2時,函數f(x)取得極小值f(2)=-3<0,
且函數f(x)在(0,2)上單調遞減,滿足f(x)=x3-3x2+1在(0,2)上有唯一零點,但a>3不成立.
故p是q的充分不必要條件.
故選:A.
點評:本題主要考查函數零點的應用,根據函數單調性和導數之間的關系,以及充分條件和必要條件的定義是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于以下結論:
①若y=f(x)是奇函數,則f(0)=0;
②已知p:事件A、B是對立事件,q:事件A、B是互斥事件,則p是q的必要但不充分條件;
③若
a
=(1,2),
b
=(0,-1)
,則
b
a
上的投影為-
2
5
5
;
ln5
5
ln3
3
1
e
(e為自然數);
⑤函數y=log2
x+2
x
的圖象可以由函數y=log2x圖象先向左平移2個單位,再向下平移1個單位而得.
其中,正確結論的序號為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知f(x)、g(x)都是定義在R上的函數,g(x)≠0,f′(x)g(x)-f(x)g′(x)<0,
f(x)
g(x)
=ax
,
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
,則關于x的方程abx2+
2
x+
5
2
=0(b∈(0,1))
有兩個不同實根的概率為(  )
A、
1
5
B、
2
5
C、
3
5
D、
4
5

查看答案和解析>>

科目:高中數學 來源: 題型:

某三棱錐的三視圖如圖所示,該三棱錐的體積是( �。�
A、18
3
B、36
3
C、12
3
D、24
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知O是△ABC所在平面內一點,且2
OA
+
OB
+
OC
=0
,則△ABO與△ABC的面積之比為( �。�
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,設橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的離心率e=
3
2
,頂點M、N的距離為
5
,O為坐標原點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過點O作兩條互相垂直的射線,與橢圓C分別交于A,B兩點.
(�。┰嚺袛帱cO到直線AB的距離是否為定值.若是請求出這個定值,若不是請說明理由;
(ⅱ)求|AB|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)在R上是奇函數,且f(x+3)=-f(x),當0<x<2時,f(x)=x2,求f(0),f(-3),f(2013).

查看答案和解析>>

科目:高中數學 來源: 題型:

不等式|2x-1|-|x+2|≥3的解集是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

一只螞蟻在三邊長分別為3,4,5的三角形內爬行,則此螞蟻距離三角形三個頂點的距離均超過1的概率為( �。�
A、1-
π
6
B、1-
π
12
C、
π
6
D、
π
12

查看答案和解析>>

同步練習冊答案