【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且對(duì)任意正整數(shù)n都有an是n與Sn的等差中項(xiàng),bn=an+1.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求出其通項(xiàng)bn;
(2)若數(shù)列{Cn}滿(mǎn)足Cn= 且數(shù)列{C }的前n項(xiàng)和為T(mén)n , 證明Tn<2.
【答案】
(1)證明:∵an是n與的等差中項(xiàng),
2an=n+Sn,
∴2an﹣1=n﹣1+Sn﹣1,(n≥2),
兩式相減得:2an﹣2an﹣1=1+an,
an=2an﹣1+1,(n≥2),
∴an+1=2(an﹣1+1),
∴bn=2bn﹣1,
=2,當(dāng)n=1,2a1=1+S1,
∴a1=1,b1=2,
∴數(shù)列{bn}是等比數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列,
bn=2n,
(2)證明:數(shù)列{Cn}滿(mǎn)足Cn= = ,
∴C = ,
當(dāng)n=1時(shí),T1= =1<2,命題成立,
當(dāng)n≥2, ,
<1+ + +…+ ,
=1+1﹣ + ﹣ +…+ ,
=2﹣ <2,命題成立.
【解析】(Ⅰ)由an是n與Sn的等差中項(xiàng),2an=n+Sn , 當(dāng)n≥2,2an﹣1=n﹣1+Sn﹣1 , 相減得:2an﹣2an﹣1=1+an , 化簡(jiǎn)整理得:an+1=2(an﹣1+1),bn=2bn﹣1 , b1=2,數(shù)列{bn}是等比數(shù)列是以2為首項(xiàng),2為公比的等比數(shù)列;(Ⅱ)數(shù)列{Cn}滿(mǎn)足Cn= ,C = ,分類(lèi)當(dāng)n=1, =1<2命題成立,當(dāng)n≥2時(shí), <1+ + +…+ ,采用裂項(xiàng)法,求得Tn=2﹣ <2,命題成立.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等比數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:,以及對(duì)數(shù)列的前n項(xiàng)和的理解,了解數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(x)=sin( x﹣ )﹣2cos2 x+1.
(1)求f(x)的最小正周期;
(2)若函數(shù)y=f(x)與y=g(x)的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),求當(dāng)x∈[0, ]時(shí),y=g(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)證明:;
(2)若對(duì)任意,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m、n∈R+ , f(x)=|x+m|+|2x﹣n|.
(1)求f(x)的最小值;
(2)若f(x)的最小值為2,證明:4(m2+ )的最小值為8.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,a,b,c為角A,B,C所對(duì)的邊,且.
(1)求cosA的值;
(2)若△ABC的面積為,并且邊AB上的中線(xiàn)CM的長(zhǎng)為,求b,c的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如下表:(平均每天鍛煉的時(shí)間單位:分鐘)
將學(xué)生日均課外體育運(yùn)動(dòng)時(shí)間在上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.
平均每天鍛煉的時(shí)間(分鐘) | ||||||
總?cè)藬?shù) | 20 | 36 | 44 | 50 | 40 | 10 |
(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面列聯(lián)表,并通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“課外體育達(dá)標(biāo)”與性別有關(guān)?
課外體育不達(dá)標(biāo) | 課外體育達(dá)標(biāo) | 合計(jì) | |
男 | |||
女 | 20 | 110 | |
合計(jì) |
(2)從上述200名學(xué)生中,按“課外體育達(dá)標(biāo)”、“課外體育不達(dá)標(biāo)”分層抽樣,抽取4人得到一個(gè)樣本,再?gòu)倪@個(gè)樣本中抽取2人,求恰好抽到一名“課外體育不達(dá)標(biāo)”學(xué)生的概率.
參考公式:,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,DE是⊙O的直徑,過(guò)⊙O上的點(diǎn)C作直線(xiàn)AB,交ED的延長(zhǎng)線(xiàn)于點(diǎn)B,且OA=OB,CA=CB,連結(jié)EC,CD.
(1)求證:直線(xiàn)AB是⊙O的切線(xiàn);
(2)若tan∠CED= ,⊙O的半徑為3,求OA的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若(2-x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5.求:
(1)|a0|+|a1|+|a2|+|a3|+|a4|+|a5|;
(2)(a0+a2+a4)2-(a1+a2+a3)2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】極坐標(biāo)系中橢圓C的方程為ρ2= ,以極點(diǎn)為原點(diǎn),極軸為x軸非負(fù)半軸,建立平面直角坐標(biāo)系,且兩坐標(biāo)系取相同的單位長(zhǎng)度.
(1)求該橢圓的直角標(biāo)方程,若橢圓上任一點(diǎn)坐標(biāo)為P(x,y),求x+ y的取值范圍;
(2)若橢圓的兩條弦AB,CD交于點(diǎn)Q,且直線(xiàn)AB與CD的傾斜角互補(bǔ),求證:|QA||QB|=|QC||QD|.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com