【題目】已知集合A={x|y=lg(x-)},B={x|-cx<0,c>0},若AB,則實(shí)數(shù)c的取值范圍是( )
A.(0,1]B.[1,+∞)
C.(0,1)D.(1,+∞)
【答案】B
【解析】
A集合用對數(shù)的真數(shù)的定義即可求出范圍,B集合化簡后含有參數(shù),所以,畫出數(shù)軸,用數(shù)軸表示AB,即可求出c的取值范圍.
解法1:A={x|y=lg(x-)}={x|x->0}={x|0<x<1},B={x|-cx<0,c>0}={x|0<x<c},因?yàn)锳B,畫出數(shù)軸,如圖所示,得c≥1.
解法2:因?yàn)锳={x|y=lg(x-)}={x|x->0}={x|0<x<1},取c=1,則B={x|0<x<1},所以AB成立,故可排除C,D;取c=2,則B={x|0<x<2} ,所以AB成立,故可排除A,故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(1)3個(gè)人坐在有八個(gè)座位的一排椅子上,若每個(gè)人的左右兩邊都要有空位,則不同坐法的種數(shù)為多少?
(2)某高校現(xiàn)有10個(gè)保送上大學(xué)的名額分配給7所高中學(xué)校,若每所高中學(xué)校至少有1個(gè)名額,則名額分配的方法共有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近來國內(nèi)一些互聯(lián)網(wǎng)公司為了贏得更大的利潤、提升員工的奮斗姿態(tài),要求員工實(shí)行“996”工作制,即工作日早9點(diǎn)上班,晚上21點(diǎn)下班,中午和傍晚最多休息1小時(shí),總計(jì)工作10小時(shí)以上,并且一周工作6天的工作制度,工作期間還不能請假,也沒有任何補(bǔ)貼和加班費(fèi).消息一出,社交媒體一片嘩然,有的人認(rèn)為這是違反《勞動(dòng)法》的一種對員工的壓榨行為,有的人認(rèn)為只有付出超越別人的努力和時(shí)間,才能夠?qū)崿F(xiàn)想要的成功,這是提升員工價(jià)值的一種有效方式.對此,國內(nèi)某大型企業(yè)集團(tuán)管理者認(rèn)為應(yīng)當(dāng)在公司內(nèi)部實(shí)行“996”工作制,但應(yīng)該給予一定的加班補(bǔ)貼(單位:百元),對于每月的補(bǔ)貼數(shù)額集團(tuán)人力資源管理部門隨機(jī)抽取了集團(tuán)內(nèi)部的1000名員工進(jìn)行了補(bǔ)貼數(shù)額(單位:百元)期望值的網(wǎng)上問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:
(1)求所得樣本的中位數(shù)(精確到百元);
(2)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為員工的加班補(bǔ)貼服從正態(tài)分布,若該集團(tuán)共有員工40000人,試估計(jì)有多少員工期待加班補(bǔ)貼在8100元以上;
(3)已知樣本數(shù)據(jù)中期望補(bǔ)貼數(shù)額在范圍內(nèi)的8名員工中有5名男性,3名女性,現(xiàn)選其中3名員工進(jìn)行消費(fèi)調(diào)查,記選出的女職員人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:若,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD沿對角線BD折成直二面角A-BD-C,有如下四個(gè)結(jié)論
①AC⊥BD;
②△ACD是等邊三角形;
③AB與平面BCD成60°的角;
④AB與CD所成的角是60°.
其中正確結(jié)論的序號(hào)是________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M,N分別為正方體ABCD﹣A1B1C1D1的棱AA1,BB1的中點(diǎn),以正方體的六個(gè)面的中心為頂點(diǎn)構(gòu)成一個(gè)八面體,若平面D1MNC1將該八面體分割成上、下兩部分的體積分別為V1、V2,則( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M在橢圓1(0<b)上,且位于第一象限,F1,F2為橢圓的兩個(gè)焦點(diǎn),過F1,F2,M的圓與y軸交于點(diǎn)P,Q(P在Q的上方),|OP||OQ|=1.
(Ⅰ)求b的值;
(Ⅱ)直線PM與直線x=2交于點(diǎn)N,試問,在x軸上是否存在定點(diǎn)T,使得為定值?若存在,求出點(diǎn)T的坐標(biāo)與該定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某品牌經(jīng)銷商在一廣場隨機(jī)采訪男性和女性用戶各50名,其中每天玩微信超過6小時(shí)的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:
微信控 | 非微信控 | 合計(jì) | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計(jì) | 56 | 44 | 100 |
(1)根據(jù)以上數(shù)據(jù),能否有95%的把握認(rèn)為“微信控”與“性別”有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5人,求所抽取的5人中“微信控”和“非微信控”的人數(shù);
(3)從(2)中抽取的5位女性中,再隨機(jī)抽取3人贈(zèng)送禮品,試求抽取3人中恰有2人位“微信控”的概率.
參考公式: ,其中.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com