【題目】如圖,三棱錐中,,,,,.
(1)求證:平面平面ABC;
(2)M是線段AC上一點,若,求二面角的大小.
【答案】(1)詳見解析;(2)
【解析】
(1)過點S作于點H,連接BH,要證明面面垂直,轉(zhuǎn)化為證明線面垂直,即證明平面;
(2)以點H為坐標原點,所在直線分別為軸,軸,在平面上垂直于的直線為軸,建立空間直角坐標系,分別求平面和平面的一個法向量為,,利用公式求二面角的大小.
(1)證明:過點S作于點H,連接BH,在中,由,,,可得,,在中,由,,可得,,在中,由,,可得,在中,由余弦定理可得 ,即 ,
在中,,,,
又,,
平面,
平面,
平面平面.
(2)如圖所示,以點H為坐標原點,所在直線分別為軸,軸,在平面上垂直于的直線為軸,建立空間直角坐標系,則,,,
則,,
易知平面的一個法向量為,
設(shè)平面的一個法向量為,
則 ,即 ,
令,得 ,
于是,
又二面角為鈍角,所以二面角為.
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)據(jù)是鄭州市普通職工個人的年收入,若這個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個數(shù)據(jù)中,下列說法正確的是( )
A.年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變
B.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大
C.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變
D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:對于一個項數(shù)為的數(shù)列,若存在且,使得數(shù)列的前k項和與剩下項的和相等(若僅為1項,則和為該項本身),我們稱該數(shù)列是“等和數(shù)列”.例如:因為,所以數(shù)列3,2,1是“等和數(shù)列”.請解答以下問題:
(1)數(shù)列1,2,p,4是“等和數(shù)列”,求實數(shù)p的值;
(2)項數(shù)為的等差數(shù)列的前n項和為,,求證:是“等和數(shù)列”.
(3)是公比為q項數(shù)為的等比數(shù)列,其中且恒成立.判斷是不是“等和數(shù)列”,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:
甲公司 | 乙公司 | |||||||||
職位 | A | B | C | D | 職位 | A | B | C | D | |
月薪/元 | 6000 | 7000 | 8000 | 9000 | 月薪/元 | 5000 | 7000 | 9000 | 11000 | |
獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | 獲得相應(yīng)職位概率 | 0.4 | 0.3 | 0.2 | 0.1 | |
(1)根據(jù)以上信息,如果你是該求職者,你會選擇哪一家公司?說明理由;
(2)某課外實習作業(yè)小組調(diào)查了1000名職場人士,就選擇這兩家公司的意愿做了統(tǒng)計,得到以下數(shù)據(jù)分布:
選擇意愿 人員結(jié)構(gòu) | 40歲以上(含40歲)男性 | 40歲以上(含40歲)女性 | 40歲以下男性 | 40歲以下女性 |
選擇甲公司 | 110 | 120 | 140 | 80 |
選擇乙公司 | 150 | 90 | 200 | 110 |
若分析選擇意愿與年齡這兩個分類變量,計算得到的K2的觀測值為k1=5.5513,測得出“選擇意愿與年齡有關(guān)系”的結(jié)論犯錯誤的概率的上限是多少?并用統(tǒng)計學知識分析,選擇意愿與年齡變量和性別變量哪一個關(guān)聯(lián)性更大?
附:
0.050 | 0.025 | 0.010 | 0.005 | |
3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知a=2,c=3,又知bsinA=acos(B).
(Ⅰ)求角B的大小、b邊的長:
(Ⅱ)求sin(2A﹣B)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:的離心率,是橢圓上的動點,且點到橢圓焦點的距離的最小值為1.
(1)求橢圓的方程;
(2)過橢圓的右焦點的直線交橢圓于,兩點,當時,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,幾何體中,,均為邊長為2的正三角形,且平面平面,四邊形為正方形.
(1)若平面平面,求證:平面平面;
(2)若二面角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐的底面是正方形, 底面, ,點分別在棱上,且平面.
(1)求證: ;
(2)求直線與平面所成角的正弦值.
(3)求二面角的余弦值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com