(2012•杭州二模)在△ABC中,角A,B,C所對的邊分別為a,b,c,設(shè)向量
m
=(a,
1
2
),
n
=(cosC,c-2b),且
m
n

(Ⅰ)求角A的大。
(Ⅱ)若a=1,求△ABC的周長l的取值范圍.
分析:(Ⅰ)利用向量的垂直,推出數(shù)量積為0,通過三角形內(nèi)角和以及兩角和的正弦函數(shù),確定角A的大;
(Ⅱ)若a=1,利用正弦定理求出b、c的表達(dá)式,通過三角形的內(nèi)角和以及兩角和的正弦函數(shù)化簡表達(dá)式,根據(jù)角的范圍,確定三角函數(shù)的范圍,然后求△ABC的周長l的取值范圍.
解答:解:(Ⅰ)由題意
m
n
.可知:
m
n
=0

即acosC+
1
2
c
=b,得sinAcosC+
1
2
sinC=sinB.
又sinB=sin(A+C)=sinAcosB+cosAsinC.
1
2
sinC=cosAsinC
,∵sinC≠0,∴cosA=
1
2

又0<A<π∴A=
π
3

(Ⅱ)由正弦定理得:b=
asinB
sinA
=
2
3
sinB
,c=
2
3
sinC
,
l=a+b+c=1+
2
3
(sinB+sinC)
=1+
2
3
(sinB+sin(A+B))

=1+2(
3
2
sinB+
1
2
cosB

=1+2sin(B+
π
6
).
∵A=
π
3

∴B∈(0,
3
)
,∴B+
π
6
∈(
π
6
6
)
,
∴sin(B+
π
6
∈(
1
2
,1]

故△ABC的周長l的范圍為(2,3].
點(diǎn)評:本題考查正弦定理,兩角和的正弦函數(shù),向量的數(shù)量積等知識的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)如圖,在矩形ABCD中,AB=2BC,點(diǎn)M在邊DC上,點(diǎn)F在邊AB上,且DF⊥AM,垂足為E,若將△ADM沿AM折起,使點(diǎn)D位于D′位置,連接D′B,D′C得四棱錐D′-ABCM.
(Ⅰ)求證:AM⊥D′F;
(Ⅱ)若∠D′EF=
π
3
,直線D'F與平面ABCM所成角的大小為
π
3
,求直線AD′與平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)設(shè)定義域為(0,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞),都有f[f(x)-log2x]=6,若x0是方程f(x)-f′(x)=4的一個解,且x0∈(a,a+1)(a∈N*),則a=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)雙曲線
x2
a2
-
y2
b2
=1(a>0, b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,漸近線分別為l1,l2,點(diǎn)P在第一 象限內(nèi)且在l1上,若l2⊥PF1,l2∥PF2,則雙曲線的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)已知正三棱柱ABC-A′B′C′的正視圖和側(cè)視圖如圖所示.設(shè)△ABC,△A′B′C′的中心分別是O,O′,現(xiàn)將此三棱柱繞直線OO′旋轉(zhuǎn),在旋轉(zhuǎn)過程中對應(yīng)的俯視圖的面積為S,則S的最大值為
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•杭州二模)若全集U={1,2,3,4,5},CUP={4,5},則集合P可以是( 。

查看答案和解析>>

同步練習(xí)冊答案