已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=n2+1,則a2014=
 
考點(diǎn):數(shù)列的求和
專題:點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:根據(jù)an與Sn的關(guān)系即可求出a2014的值.
解答: 解:∵Sn=n2+1
∴a2014=S2014-S2013=(20142+1)-(20132+1)=20142-20132=(2014+2013)(2014-2013)=4027,
故答案為:4027
點(diǎn)評(píng):本題主要考查數(shù)列項(xiàng)的求解,根據(jù)an=Sn-Sn-1(n≥2)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+x(a∈R)
(1)當(dāng)0<a<
1
2
時(shí),f(sinx)(x∈R)的最大值為
5
4
,求f(x)的最小值;
(2)對(duì)于任意的x∈R,總有f(sinxcosx)≤1,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x+1|-|x|.
(1)求不等式f(x)>0的解集;
(2)若存在x∈R,使得f(x)≤m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:①y=cos(x-
π
4
)cos(x+
π
4
)的圖象中相鄰兩個(gè)對(duì)稱中心的距離為π,②y=
x+3
x-1
的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱,③關(guān)于x的方程ax2-2ax-1=0有且僅有一個(gè)實(shí)根,則a=-1,④命題p:對(duì)任意x∈R,都有sinx≤1;則¬p:存在x∈R,使得sinx>1.其中真命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=2n2-3n,而a1,a3,a5,a7,…組成一新數(shù)列{bn},則數(shù)列{bn}的前n項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

運(yùn)行如圖框圖,輸出的K的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)、g(x)滿足:對(duì)任意x,y∈R有f(x-y)=f(x)g(y)-f(y)g(x)且f(1)≠0.若f(1)=f(2),則g(-1)+g(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程|x2-a|-x+2=0(a>0)有兩個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是(  )
A、0<a<4B、a>4
C、0<a<2D、a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

P為橢圓
x2
4
+
y2
3
=1
上一點(diǎn),F(xiàn)1、F2為該橢圓的兩個(gè)焦點(diǎn),若∠F1PF2=60°,則
.
PF1
.
PF2
等于(  )
A、3
B、
3
C、2
3
D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案