在平面直角坐標(biāo)系中,已知定點(diǎn)F(1,0),點(diǎn)軸上運(yùn)動(dòng),點(diǎn)軸上,點(diǎn)
為平面內(nèi)的動(dòng)點(diǎn),且滿足
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)點(diǎn)是直線上任意一點(diǎn),過點(diǎn)作軌跡的兩條切線,,切點(diǎn)分別為,,設(shè)切線的斜率分別為,,直線的斜率為,求證:
(1),(2)詳見解析.

試題分析:(1)求動(dòng)點(diǎn)軌跡方程,分四步。第一步,設(shè)所求動(dòng)點(diǎn)坐標(biāo),設(shè)點(diǎn),,.第二步,建立等量關(guān)系,由可知,點(diǎn)的中點(diǎn),所以所以點(diǎn),.所以.由,可得,第三步,化簡(jiǎn)等量關(guān)系,即.第四步,去雜或確定取值范圍,本題就是(2)證明三直線斜率關(guān)系,實(shí)質(zhì)研究其坐標(biāo)關(guān)系. 設(shè)點(diǎn),則過點(diǎn)的直線,聯(lián)立方程,整理得.則,化簡(jiǎn)得.所以.又,故
【解】(1)設(shè)點(diǎn),,
可知,點(diǎn)的中點(diǎn),
所以所以點(diǎn)
所以,.       3分
,可得,即
所以動(dòng)點(diǎn)的軌跡的方程為.     5分

(2)設(shè)點(diǎn),
由于過點(diǎn)的直線與軌跡相切,
聯(lián)立方程,整理得.    7分
,
化簡(jiǎn)得
顯然,,是關(guān)于的方程的兩個(gè)根,所以
,故
所以命題得證.                                           10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線的焦點(diǎn)分別為交于兩點(diǎn)(為坐標(biāo)原點(diǎn)),且.
(1)求拋物線的方程;
(2)過點(diǎn)的直線交的下半部分于點(diǎn),交的左半部分于點(diǎn),點(diǎn)坐標(biāo)為,求△面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·蚌埠模擬]已知M(-2,0),N(2,0),|PM|-|PN|=4,則動(dòng)點(diǎn)P的軌跡是(  )
A.雙曲線B.雙曲線左邊一支
C.一條射線 D.雙曲線右邊一支

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線y = -3上,M點(diǎn)滿足,M點(diǎn)的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動(dòng)點(diǎn),l為C在P點(diǎn)處得切線,求O點(diǎn)到l距離的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等邊三角形的一個(gè)頂點(diǎn)在坐標(biāo)原點(diǎn),另外兩個(gè)頂點(diǎn)在拋物線上,則該三角形的面積是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(diǎn)P是拋物線y2=2x上的動(dòng)點(diǎn),點(diǎn)P到準(zhǔn)線的距離為d,且點(diǎn)P在y軸上的射影是M,點(diǎn)A(,4),則|PA|+|PM|的最小值是
A.
B.4
C.
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知拋物線的方程為,過點(diǎn)作直線與拋物線相交于兩點(diǎn),點(diǎn)的坐標(biāo)為,連接,設(shè)軸分別相交于兩點(diǎn).如果的斜率與的斜率的乘積為,則的大小等于.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)F(0,1)和直線l1:y=-1,過定點(diǎn)F與直線l1相切的動(dòng)圓圓心為點(diǎn)C.
(1)求動(dòng)點(diǎn)C的軌跡方程;
(2)過點(diǎn)F的直線l2交軌跡于兩點(diǎn)P、Q,交直線l1于點(diǎn)R,求·的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的準(zhǔn)線為(    )
A.x= 8B.x=-8
C.x=4D.x=-4

查看答案和解析>>

同步練習(xí)冊(cè)答案