設(shè)函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時,不等式恒成立,求實數(shù)的取值范圍;
(3)若關(guān)于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。
(1)(-2,-1)和(0,+∞)
(2)m>e2-2
(3)2-ln4<a≤3-ln9
【解析】解析:依題意知,又因為
(1)令
或x>0,所以f(x)的單調(diào)增區(qū)間為(-2,-1)和(0,+∞);…(3分)
令
的單調(diào)減區(qū)間(-1,0)和(-∞,-2)!5分)
(2)令(舍),由(1)知,f(x)連續(xù),
因此可得:f(x)<m恒成立時,m>e2-2 (9分)
(3)原題可轉(zhuǎn)化為:方程a=(1+x)-ln(1+x)2在區(qū)間[0,2]上恰好有兩個相異的實根。
且2-ln4<3-ln9<1,∴的最大值是1,的最小值是2-ln4。
所以在區(qū)間[0,2]上原方程恰有兩個相異的實根時實數(shù)a的取值范圍是:
2-ln4<a≤3-ln9 ………………… (14分)
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
px+1 |
x+1 |
1 |
2 |
n |
cn |
-1 |
anSn2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | an |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com