(2012•黑龍江)已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,△ABC是邊長(zhǎng)為1的正三角形,SC為球O的直徑,且SC=2,則此棱錐的體積為( 。
分析:先確定點(diǎn)S到面ABC的距離,再求棱錐的體積即可.
解答:解:∵△ABC是邊長(zhǎng)為1的正三角形,
∴△ABC的外接圓的半徑r=
3
3
,
∵點(diǎn)O到面ABC的距離d=
R2-r2
=
6
3
,SC為球O的直徑
∴點(diǎn)S到面ABC的距離為2d=
2
6
3

∴棱錐的體積為V=
1
3
S△ABC×2d=
1
3
×
3
4
×
2
6
3
=
2
6

故選A.
點(diǎn)評(píng):本題考查棱錐的體積,考查球內(nèi)角多面體,解題的關(guān)鍵是確定點(diǎn)S到面ABC的距離.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑龍江)已知ω>0,函數(shù)f(x)=sin(ωx+
π
4
)
(
π
2
,π)
上單調(diào)遞減.則ω的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑龍江)復(fù)數(shù)z=
-3+i
2+i
的共軛復(fù)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑龍江)已知向量
a
,
b
夾角為45°,且|
a
|=1,|2
a
-
b
|=
10
,則|
b
|
=
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•黑龍江)已知集合A={x|x2-x-2<0},B={x|-1<x<1},則( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案