【題目】已知函數(shù), ),且對(duì)任意,都有.

(Ⅰ)用含的表達(dá)式表示;

(Ⅱ)若存在兩個(gè)極值點(diǎn), ,且,求出的取值范圍,并證明;

(Ⅲ)在(Ⅱ)的條件下,判斷零點(diǎn)的個(gè)數(shù),并說明理由.

【答案】(1)(2)見解析(3)見解析

【解析】試題分析:利用賦值法求出關(guān)系,求函數(shù)導(dǎo)數(shù),要求函數(shù)有兩個(gè)極值點(diǎn),只需內(nèi)有兩個(gè)實(shí)根,利用一元二次方程的根的分布求出的取值范圍,再根據(jù)函數(shù)圖象和極值的大小判斷零點(diǎn)的個(gè)數(shù).

試題解析:根據(jù)題意:令,可得,

所以,

經(jīng)驗(yàn)證,可得當(dāng)時(shí),對(duì)任意,都有,

所以.

可知,且,

所以

,要使存在兩個(gè)極值點(diǎn), ,則須有有兩個(gè)不相等的正數(shù)根,所以

解得或無解,所以的取值范圍,可得

由題意知 ,

,則

而當(dāng)時(shí), ,即,

所以上單調(diào)遞減,

所以

時(shí),

因?yàn)?/span> ,

,

時(shí), 的對(duì)稱軸, ,所以.

,可得,此時(shí), 上單調(diào)遞減, 上單調(diào)遞增, 上單調(diào)遞減,所以 最多只有三個(gè)不同的零點(diǎn).

又因?yàn)?/span>,所以上遞增,即時(shí), 恒成立.

根據(jù)(2)可知,所以,即,所以,使得

,得,又, ,

所以恰有三個(gè)不同的零點(diǎn): ,1,

綜上所述, 恰有三個(gè)不同的零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列是有關(guān)三角形ABC的幾個(gè)命題,
①若tanA+tanB+tanC>0,則△ABC是銳角三角形;
②若sin2A=sin2B,則△ABC是等腰三角形;
③若( + =0,則△ABC是等腰三角形;
④若cosA=sinB,則△ABC是直角三角形;
其中正確命題的個(gè)數(shù)是( )
A..1
B..2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC內(nèi)一點(diǎn)O滿足 = ,若△ABC內(nèi)任意投一個(gè)點(diǎn),則該點(diǎn)△OAC內(nèi)的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知B=45°,D是BC上一點(diǎn),AD=5,AC=7,DC=3,求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小華準(zhǔn)備購買一臺(tái)售價(jià)為5000元的電腦,采用分期付款方式,并在一年內(nèi)將款全部付清,商場(chǎng)提出的 付款方式為:購買后二個(gè)月第一次付款,再過二個(gè)月第二次付款…,購買后12個(gè)月第六次付款,每次付
款金額相同,約定月利率為0.8%每月利息按復(fù)利計(jì)算.求小華每期付款的金額是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )(x∈R)的部分圖象如圖所示.
(Ⅰ)求函數(shù)f(x)的解析式并求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)求函數(shù)f(x)的最小值并指出函數(shù)f(x)取最小值時(shí)相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),兩定點(diǎn)A,B滿足| |=| |= =2,則點(diǎn)集{P| =x +y ,|x|+|y|≤1,x,y∈R}所表示的區(qū)域的面積是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在區(qū)間[﹣1,1]上的奇函數(shù),且f(﹣1)=1,若m,n∈[﹣1,1],m+n≠0時(shí),有 <0.
(1)解不等式f(x+ )<f(1﹣x);
(2)若f(x)≤t2﹣2at+1對(duì)所有x∈[﹣1,1],a∈[﹣1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:

將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.

(1)根據(jù)已知條件完成上面的列聯(lián)表,若按的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體育迷”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求分布列,期望和方差.

附:

查看答案和解析>>

同步練習(xí)冊(cè)答案