如圖,在三棱錐中,側(cè)面與底面垂直, 分別是的中點(diǎn),,,.

(Ⅰ)求證:平面;
(Ⅱ)若點(diǎn)為線(xiàn)段的中點(diǎn),求異面直線(xiàn)所成角的正切值.
(1)詳見(jiàn)解析;(2)

試題分析:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025140490544.png" style="vertical-align:middle;" />中,是中位線(xiàn),故,所以要證明平面,只需證明平面,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025140599541.png" style="vertical-align:middle;" />,故只需證明,由已知側(cè)面與底面垂直且,故,從而,進(jìn)而證明平面;(Ⅱ)連接,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025140771388.png" style="vertical-align:middle;" />是的中位線(xiàn),則,則就是異面直線(xiàn)所成的角,連接,由已知得,則,在中求即可.

試題解析:(Ⅰ)分別是的中點(diǎn)

由①②知平面.
(Ⅱ)連接,
的中點(diǎn)是異面直線(xiàn)所成的角.
等腰直角三角形,且
又平面平面,所以平面,,
. ,.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱錐中,,的中點(diǎn),的中點(diǎn),且為正三角形.

(1)求證:平面
(2)若,,求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在直角梯形中,,,. 把沿對(duì)角線(xiàn)折起到的位置,如圖2所示,使得點(diǎn)在平面上的正投影恰好落在線(xiàn)段上,連接,點(diǎn)分別為線(xiàn)段的中點(diǎn).

(1)求證:平面平面;
(2)求直線(xiàn)與平面所成角的正弦值;
(3)在棱上是否存在一點(diǎn),使得到點(diǎn)四點(diǎn)的距離相等?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四面體中,、分別是、的中點(diǎn),

(Ⅰ)求證:平面;
(Ⅱ)求二面角的正切值;
(Ⅲ)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱中,

(Ⅰ)求證:平面;
(Ⅱ)若的中點(diǎn),求與平面所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

右圖是一個(gè)直三棱柱(以為底面)被一平面所截得到的幾何體,截面為.已知,,,,

(1)設(shè)點(diǎn)的中點(diǎn),證明:平面;
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱中,,,為的中點(diǎn).

(1)求證:∥平面;
(2)求證:平面;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中,,,的中點(diǎn),分別在線(xiàn)段上的動(dòng)點(diǎn),且,,把沿折起,如下圖所示,

(Ⅰ)求證:平面
(Ⅱ)當(dāng)二面角為直二面角時(shí),是否存在點(diǎn),使得直線(xiàn)與平面所成的角為,若存在求的長(zhǎng),若不存在說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)為直線(xiàn),是兩個(gè)不同的平面,下列命題中正確的是(    )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

同步練習(xí)冊(cè)答案