【題目】已知點為拋物線的焦點,過的直線交拋物線于兩點.
(1)若直線的斜率為1,,求拋物線的方程;
(2)若拋物線的準(zhǔn)線與軸交于點,,求的值.
【答案】(1);(2)2.
【解析】試題分析:(1)直線的方程為,聯(lián)立直線與拋物線的方程,將韋達(dá)定理和過焦點的弦長公式相結(jié)合可得的值,即可得拋物線的方程;(2)根據(jù)題意得拋物線,直線的方程為聯(lián)立方程組,將轉(zhuǎn)化為,將向量用坐標(biāo)表示即可得,從而可得的值.
試題解析:(1)由題意知,直線的方程為.
聯(lián)立得.
設(shè)兩點的坐標(biāo)分別為,
則.
由拋物線的性質(zhì),可得,
解得,所以拋物線的方程為.
(2)由題意,得,拋物線,
設(shè)直線的方程為,,
聯(lián)立得.
所以①
因為,
所以.
因為三點共線,且方向相同,
所以,
所以,
所以,
代入①,得 解得,
又因為,所以,
所以
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2022年北京冬奧運(yùn)動會即第24屆冬季奧林匹克運(yùn)動會將在2022年2月4日至2月20日在北京和張家口舉行,某研究機(jī)構(gòu)為了了解大學(xué)生對冰壺運(yùn)動的興趣,隨機(jī)從某大學(xué)生中抽取了100人進(jìn)行調(diào)查,經(jīng)統(tǒng)計男生與女生的人數(shù)比為,男生中有20人表示對冰壺運(yùn)動有興趣,女生中有15人對冰壺運(yùn)動沒有興趣.
(1)完成列聯(lián)表,并判斷能否有把握認(rèn)為“對冰壺運(yùn)動是否有興趣與性別有關(guān)”?
有興趣 | 沒有興趣 | 合計 | |
男 | 20 | ||
女 | 15 | ||
合計 | 100 |
(2)用分層抽樣的方法從樣本中對冰壺運(yùn)動有興趣的學(xué)生中抽取6人,求抽取的男生和女生分別為多少人?若從這6人中選取兩人作為冰壺運(yùn)動的宣傳員,求選取的2人中恰好有1位男生和1位女生的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生態(tài)環(huán)境部環(huán)境規(guī)劃院研究表明,京津冀區(qū)域PM2.5主要來自工業(yè)和民用污染,其中冬季民用污染占比超過50%,最主要的源頭是散煤燃燒.因此,推進(jìn)煤改清潔能源成為三地協(xié)同治理大氣污染的重要舉措.2018年是北京市壓減燃煤收官年,450個平原村完成了煤改清潔能源,全市集中供熱清潔化比例達(dá)到99%以上,平原地區(qū)基本實現(xiàn)“無煤化”,為了解“煤改氣”后居民在采暖季里每月用氣量的情況,現(xiàn)從某村隨機(jī)抽取100戶居民進(jìn)行調(diào)查,發(fā)現(xiàn)每戶的用氣量都在150立方米到450立方米之間,得到如圖所示的頻率分布直方圖.在這些用戶中,用氣量在區(qū)間的戶數(shù)為( )
A.5B.15C.20D.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在(﹣1,1)上的奇函數(shù),且f().
(Ⅰ)求實數(shù)m,n的值,并用定義證明f(x)在(﹣1,1)上是增函數(shù);
(Ⅱ)設(shè)函數(shù)g(x)是定義在(﹣1,1)上的偶函數(shù),當(dāng)x∈[0,1)時,g(x)=f(x),求函數(shù)g(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的函數(shù),且對任意實數(shù)x,有f(x﹣2)=x2﹣3x+3.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若{x|f(x﹣2)=﹣(a+2)x+3﹣b}={a},求a和b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為.
(1)寫出直線的普通方程及曲線的直角坐標(biāo)方程;
(2)已知點,點,直線過點且與曲線相交于,兩點,設(shè)線段的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某險種的基本保費為a(單位:元),繼續(xù)購買該險種的投保人稱為續(xù)保人,續(xù)保人本年度的保費與其上年度出險次數(shù)的關(guān)聯(lián)如下:
上年度出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
保費 | 0.85a | a | 1.25a | 1.5a | 1.75a | 2a |
隨機(jī)調(diào)查了該險種的200名續(xù)保人在一年內(nèi)的出險情況,得到如下統(tǒng)計表:
出險次數(shù) | 0 | 1 | 2 | 3 | 4 | ≥5 |
頻數(shù) | 60 | 50 | 30 | 30 | 20 | 10 |
(1)記A為事件:“一續(xù)保人本年度的保費不高于基本保費”,求P(A)的估計值;
(2)記B為事件:“一續(xù)保人本年度的保費高于基本保費但不高于基本保費的160%”,求P(B)的估計值;
(3)求續(xù)保人本年度平均保費的估計值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實數(shù)a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com