復數(shù)z=
1
a
+ai(a∈R且a≠0)對應的點在復平面內(nèi)位于( 。
A、第一、二象限
B、第一、三象限
C、第二、四象限
D、第三、四象限
考點:復數(shù)代數(shù)形式的乘除運算
專題:數(shù)系的擴充和復數(shù)
分析:利用復數(shù)的運算法則、幾何意義即可得出.
解答: 解:復數(shù)z=
1
a
+ai(a∈R且a≠0)對應的點(
1
a
,a)
的橫坐標與縱坐標的符號相同,
因此對應的點在復平面內(nèi)位于第一、三象限.
故選:B.
點評:本題考查了復數(shù)的運算法則、幾何意義,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

數(shù)列{an}是公差不為零的等差數(shù)列,其前n項和為Sn,若記數(shù)據(jù)a1,a2,a3,…,a2015的方差為λ1,數(shù)據(jù)
S1
1
,
S2
2
S3
3
,…,
S2015
2015
的方差為λ2,k=
λ1
λ2
.則( 。
A、k=4.
B、k=2.
C、k=1.
D、k的值與公差d的大小有關.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若復數(shù)z滿足z(3-4i)=5,則z的虛部為( 。
A、-
4
5
B、
4
5
C、-4
D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合P={x|x2-1≤0},M={a},若P∪M=P,則實數(shù)a的取值范圍是( 。
A、(-∞,-1]
B、[1,+∞)
C、[-1,1]
D、(-∞,-1]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐P-ABCD中,PA=CA,PA⊥底面ABCD,E,F(xiàn),分別為PD,PC的中點,且底面ABCD中,∠ABC,∠ACD都為直角,∠BAC,∠CAD的大小都為60°.
(1)求證:CE∥平面PAB;
(2)求證:平面PCD⊥平面AEF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|0<x<2},B={x||x|>1},則A∩B=( 。
A、(0,1)
B、(1,2)
C、(-∞,-1)∪(0,+∞)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四邊形ABCD為矩形,AD⊥平面ABE,∠AEB=90°,F(xiàn)為CE上的點.
(Ⅰ)求證:AD∥平面BCE;
(Ⅱ)求證:AE⊥BF.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

廣東省第十四屆運動會將在湛江舉行,組委會招募了12名男志愿者和18名女志愿者,將這30名志愿者的身高編成如圖所示的莖葉圖(單位:cm),身高在175cm以上(包括175cm)定義為“高個子”身高在175cm以下(不包括175cm)定義為“非高個子”.

(1)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,求至少有一人是“高個子”的概率;
(2)若從身高180cm以上(包括180cm)的志愿者中選出男、女各一人,設這2人身高相差ξcm(ξ≥0),求ξ的分布列和數(shù)學期望(均值).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知偶函數(shù)f(x)滿足f(x+1)=-
1
f(x)
,且當x∈[-1,0]時,f(x)=x2,若在區(qū)間[-1,3]內(nèi),函數(shù)g(x)=f(x)-loga(x+2)有4個零點,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案