精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)=ax2+bx+c,且a>b>c,a+b+c=0,集合A={m|f(m)<0},則(
A.任意m∈A,都有f(m+3)>0
B.任意m∈A,都有f(m+3)<0
C.存在m∈A,都有f(m+3)=0
D.存在m∈A,都有f(m+3)<0

【答案】A
【解析】解:∵函數f(x)=ax2+bx+c,且a>b>c,a+b+c=0,故有 a>0,且c<0. ∴0<a+a+c=2a+c,即 >﹣2,且 0>a+c+c=a+2c,即 <﹣ ,因此有﹣2< <﹣
又f(1)=a+b+c=0,故x=1為f(x)的一個零點.
由根與系數的關系可得,另一零點為 <0,所以有:A={m| <m<1}.
所以,m+3> +3>1,所以有f(m+3)>0恒成立,
故選:A.
【考點精析】本題主要考查了函數的值域的相關知識點,需要掌握求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺,這個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在銳角△ABC中,A,B,C角所對的邊分別為a,b,c,且 = sinC.
(1)求∠C;
(2)若 =2,求△ABC面積S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=alnx+x在區(qū)間[2,3]上單調遞增,則實數a的取值范圍是(
A.[﹣2,+∞)
B.[﹣3,+∞)
C.[0,+∞)
D.(﹣∞,﹣2)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】第十三屆全運會將在2017年8月在天津舉行,組委會在2017年1月對參加接待服務的10名賓館經理進行為期半月的培訓,培訓結束,組織了一次培訓結業(yè)測試,10人考試成績如下(滿分為100分):
75 84 65 90 88 95 78 85 98 82
(1)以成績的十位為莖個位為葉作出本次結業(yè)成績的莖葉圖,并計算平均成績與成績中位數 ;
(2)從本次結業(yè)成績在80分以上的人員中選3人,這3人中成績在90分(含90分)以上的人數為 ,求 的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,直四棱柱ABCD﹣A1B1C1D1中,AB∥CD,AB⊥AD,AD=AB=1.AA1=CD=2.E為棱DD1的中點.
(1)證明:B1C1⊥平面BDE;
(2)求二面角D﹣BE﹣C1的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在Z上的函數f(x),對任意x,y∈Z,都有f(x+y)+f(x﹣y)=4f(x)f(y)且f(1)= ,則f(0)+f(1)+f(2)+…+f(2017)=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數 的圖象向右平移 個周期后,所得圖象對應的函數為f(x),則函數f(x)的單
調遞增區(qū)間(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某商場進行有獎促銷活動,顧客購物每滿500元,可選擇返回50元現金或參加一次抽獎,抽獎規(guī)則如下:從1個裝有6個白球、4個紅球的箱子中任摸一球,摸到紅球就可獲得100元現金獎勵,假設顧客抽獎的結果相互獨立.
(Ⅰ)若顧客選擇參加一次抽獎,求他獲得100元現金獎勵的概率;
(Ⅱ)某顧客已購物1500元,作為商場經理,是希望顧客直接選擇返回150元現金,還是選擇參加3次抽獎?說明理由;
(Ⅲ)若顧客參加10次抽獎,則最有可能獲得多少現金獎勵?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC中,AC=1, ,設∠BAC=x,記
(1)求函數f(x)的解析式及定義域;
(2)試寫出函數f(x)的單調遞增區(qū)間,并求方程 的解.

查看答案和解析>>

同步練習冊答案