設an=(2,3,4,…)是的展開式中x的一次項的系數(shù),則的值是
A.16
B.17
C.18
D.19
科目:高中數(shù)學 來源: 題型:
(本小題滿分13分)已知數(shù)列{an}的前n項和為Sn,滿足關(guān)系式(2+t)Sn+1-tSn=2t+4(t≠-2,t≠0,n=1,2,3,…)
(1)當a1為何值時,數(shù)列{an}是等比數(shù)列;
(2)在(1)的條件下,設數(shù)列{an}的公比為f(t),作數(shù)列{bn}使b1=1,bn=f(bn-1)(n=2,
3,4,…),求bn;
(3)在(2)條件下,如果對一切n∈N+,不等式bn+bn+1<恒成立,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分13分)已知數(shù)列{an}的前n項和為Sn,滿足關(guān)系式(2+t)Sn+1-tSn=2t+4(t≠-2,t≠0,n=1,2,3,…)
(1)當a1為何值時,數(shù)列{an}是等比數(shù)列;
(2)在(1)的條件下,設數(shù)列{an}的公比為f(t),作數(shù)列{bn}使b1=1,bn=f(bn-1)(n=2,
3,4,…),求bn;
(3)在(2)條件下,如果對一切n∈N+,不等式bn+bn+1<恒成立,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設數(shù)列{an}的首項a1∈(0,1),,n=2,3,4,….(Ⅰ)求{an}的通項公式;(Ⅱ)設,證明bn<bn+1,其中n為正整數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
設數(shù)列{an}的首項a1∈(0,1),an=,n=2,3,4,….(Ⅰ)求{an}的通項公式;(Ⅱ)設bn=an,證明bn<bn+1,其中n為正整數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com