下列表述正確的是( 。
①歸納推理是由特殊到一般的推理;
②演繹推理是由一般到特殊的推理;
③類比推理是由特殊到一般的推理;
④分析法是一種間接證明法;
⑤若z∈C,且|z+2-2i|=1,則|z-2-2i|的最小值是3.
A、①②③④B、②③④
C、①②④⑤D、①②⑤
考點(diǎn):分析法和綜合法,合情推理和演繹推理之間的聯(lián)系和差異
專題:綜合題,推理和證明
分析:本題考查的知識(shí)點(diǎn)是歸納推理、類比推理和演繹推理的定義,根據(jù)定義對(duì)①②③個(gè)命題逐一判斷;分析法是一種直接證明法;考慮|Z+2-2i|=1的幾何意義,表示以(-2,2)為圓心,以1為半徑的圓,|Z-2-2i|的最小值,就是圓上的點(diǎn)到(2,2)距離的最小值,轉(zhuǎn)化為圓心到(2,2)距離與半徑的差,即可得到答案.
解答: 解:歸納推理是由部分到整體、特殊到一般的推理,故①正確;
演繹推理是由一般到特殊的推理,故②正確;
類比推理是由特殊到特殊的推理,故③錯(cuò)誤;
分析法是一種直接證明法,故④錯(cuò)誤;
|z+2-2i|=1表示復(fù)平面上的點(diǎn)到(-2,2)的距離為1的圓,|z-2-2i|就是圓上的點(diǎn),到(2,2)的距離的最小值,就是圓心到(2,2)的距離減去半徑,即:|2-(-2)|-1=3,故⑤正確
故選:D.
點(diǎn)評(píng):判斷一個(gè)推理過(guò)程是否是歸納推理關(guān)鍵是看他是否符合歸納推理的定義,即是否是由特殊到一般的推理過(guò)程.判斷一個(gè)推理過(guò)程是否是類比推理關(guān)鍵是看他是否符合類比推理的定義,即是否是由特殊到與它類似的另一個(gè)特殊的推理過(guò)程.判斷一個(gè)推理過(guò)程是否是演繹推理關(guān)鍵是看他是否符合演繹推理的定義,即是否是由一般到特殊的推理過(guò)程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列結(jié)論
①扇形的圓心角為
2
3
π弧度,半徑為2,則扇形的面積是
4
3
π;
②某小禮堂有25排座位,每排20個(gè),一次心理學(xué)講座,禮堂中坐滿了學(xué)生,會(huì)后為了了解有關(guān)情況,留下座位號(hào)是15的所有25名學(xué)生進(jìn)行測(cè)試,這里運(yùn)用的是系統(tǒng)抽樣方法;
③一個(gè)人打靶時(shí)連續(xù)射擊兩次,則事件“至少有一次中靶”與事件“兩次都不中靶”互為對(duì)立事件;
④若數(shù)據(jù):x1,x2,x3,…,xn的方差為8,則數(shù)據(jù)2x1+1,2x2+1,2x3+1,…,2xn+1的方差為16;
⑤相關(guān)系數(shù)r越大,表示兩個(gè)變量相關(guān)性越強(qiáng).
其中正確結(jié)論的序號(hào)為
 
.(把你認(rèn)為正確結(jié)論的序號(hào)都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn)asin0°+bcos90°=(  )
A、aB、bC、a+bD、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα=-
1
2
,則
1+2sinαcosα
sin2α-cos2α
=(  )
A、
1
3
B、3
C、-
1
3
D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5名應(yīng)屆畢業(yè)生報(bào)考三所高校,每人報(bào)且僅報(bào)一所院校,則不同的報(bào)名方法的種數(shù)是(  )
A、35
B、53
C、
A
3
5
D、
C
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線y=x2與直線y-x-2=0圍成圖形的面積是( 。
A、
13
3
B、
13
6
C、
9
2
D、
7
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

曲線
x=5cosθ
y=4sinθ
(θ為參數(shù))的焦距是( 。
A、3B、6C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某單位有27名老年人,54名中年人,81名青年人.為了調(diào)查他們的身體情況,用分層抽樣的方法從他們中抽取了n個(gè)人進(jìn)行體檢,其中有6名老年人,那么n=( 。
A、35B、36C、37D、162

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}中,已知a7=3,則它的前13項(xiàng)的和S13=( 。
A、39B、20C、18D、不確定

查看答案和解析>>

同步練習(xí)冊(cè)答案