已知函數(shù)f(x)=x-xlnx,g(x)=f(x)-xf′(a),其中f′(a)表示函數(shù)f(x)在x=a處的導(dǎo)數(shù),a為正常數(shù).
(1)求g(x)的單調(diào)區(qū)間;
(2)對任意的正實數(shù)x1,x2,且x1<x2,證明:(x2-x1)f′(x2)<f(x2)-f(x1)<(x2-x1)f′(x1);
(3)對任意的n∈N*,且n≥2,證明:數(shù)學(xué)公式

(1)解:f'(x)=-lnx,g(x)=x-xlnx+xlna,g'(x)=f'(x)-f'(a)=-lnx+lna=ln. …(2分)
所以,x∈(0,a)時,g'(x)>0,g(x)單調(diào)遞增;x∈(a,+∞)時,g'(x)<0,g(x)單調(diào)遞減.
所以,g(x)的單調(diào)遞增區(qū)間為(0,a],單調(diào)遞減區(qū)間為[a,+∞). …(4分)
(2)證明:對任意的正實數(shù)x1,x2,且x1<x2,取a=x1,則x2∈(x1,+∞),由(1)得g(x1)>g(x2),
即g(x1)=f(x1)-x1f'(x1)>f(x2)-x2f'(x1)=g(x2),
所以,f(x2)-f(x1)<(x2-x1)f'(x1)…①; …(6分)
取a=x2,則x1∈(0,x2),由(1)得g(x1)<g(x2),即g(x1)=f(x1)-x1f'(x2)<f(x2)-x2f'(x2)=g(x2),
所以,f(x2)-f(x1)>(x2-x1)f'(x2)…②.
綜合①②,得(x2-x1)f'(x2)<f(x2)-f(x1)<(x2-x1)f'(x1). …(8分)
(3)證明:對k=1,2,…,n-2,令φ(x)=,則φ′(x)=,
顯然1<x<x+k,0<lnx<ln(x+k),所以xlnx<(x+k)ln(x+k),所以φ′(x)<0,φ(x)在(1,+∞)上單調(diào)遞減.
由n-k≥2,得φ(n-k)≤φ(2),即
所以ln2lnn≤ln(2+k)ln(n-k),k=1,2,…,n-2. …(10分)
所以=
=2 …(12分)
又由(2)知f(n+1)-f(n)<f′(n)=-lnn,所以lnn<f(n)-f(n+1).
∴l(xiāng)n1+ln2+…+lnn<f(1)-f(2)+f(2)-f(3)+…+f(n)-f(n+1)=f(1)-f(n+1)=1-f(n+1).
所以,.…(14分)
分析:(1)求導(dǎo)函數(shù),利用導(dǎo)數(shù)的正負(fù),可確定函數(shù)的單調(diào)區(qū)間;
(2)先證明f(x2)-f(x1)<(x2-x1)f'(x1),f(x2)-f(x1)>(x2-x1)f'(x2),即可得(x2-x1)f'(x2)<f(x2)-f(x1)<(x2-x1)f'(x1);
(3)構(gòu)造函數(shù)φ(x)=,確定φ(x)在(1,+∞)上單調(diào)遞減,從而可得,即ln2lnn≤ln(2+k)ln(n-k),再利用放縮法,即可證得結(jié)論.
點評:本題考查導(dǎo)數(shù)知識的運用,考查函數(shù)的單調(diào)性,考查不等式的證明,考查放縮法的運用,綜合性強(qiáng),難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案