精英家教網 > 高中數學 > 題目詳情

(本題滿分12分)
如圖,四棱錐P—ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中點。

(1)求證:CD⊥AE;
(2)求證:PD⊥面ABE。

(1)要證明線線垂直,則只要根據線面垂直的性質定理可以證明。
(2)對于線面垂直的證明,一般先證明線線垂直,然后結合線面垂直的判定定理得到,關鍵是證明AE⊥PD和BA⊥PD。

解析試題分析:(I)證明:∵PA⊥底面ABCD
∴CD⊥PA
又CD⊥AC,PA∩AC=A,
故CD⊥面PAC 
AE面PAC,故CD⊥AE 
(II)證明:PA=AB=BC,∠ABC=60°,
故PA=ACE是PC的中點,故AE⊥PC
由(I)知CD⊥AE,從而AE⊥面PCD,
故AE⊥PD
易知BA⊥PD,故PD⊥面ABE 
考點:線線垂直和線面垂直
點評:本試題考查了空間中線線與線面的位置關系的運用,關鍵是熟練的結合線線與線面垂直的判定定理和性質定理來得到證明,屬于基礎題。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

如圖,在梯形△ABCD中,AB//CD,AD=DC-=CB=1,ABC=60。,四邊形ACFE為矩形,平面ACFE上平面ABCD,CF=1.

(1)求證:BC⊥平面ACFE;  
(2)若M為線段EF的中點,設平面MAB與平面FCB所成角為,求

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,四邊形中,為正三角形,,,交于點.將沿邊折起,使點至點,已知與平面所成的角為,且點在平面內的射影落在內.

(Ⅰ)求證:平面;
(Ⅱ)若已知二面角的余弦值為,求的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)在三棱錐中,是邊長為4的正三角形,,、分別是的中點;

(1)證明:平面平面
(2)求直線與平面所成角的正弦值。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知四棱錐的底面是等腰梯形,
分別是的中點.

(1)求證:; 
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐中,四邊形是菱形,,的中點.

(1)求證:;  (2)求證:平面平面.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖所示在四棱錐P—ABCD中,平面PAB⊥平面ABCD,底面ABCD是邊長為2的正方形,△PAB為等邊三角形。(12分)

(1)求PC和平面ABCD所成角的大;
(2)求二面角B─AC─P的大小。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)
已知如圖(1),正三角形ABC的邊長為2a,CDAB邊上的高,E、F分別是ACBC邊上的點,且滿足,現將△ABC沿CD翻折成直二面角A-DC-B,如圖(2).

(Ⅰ) 求二面角B-AC-D的大;
(Ⅱ) 若異面直線ABDE所成角的余弦值為,求k的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

(本小題滿分12分)如圖,矩形所在平面與平面垂直,,且,上的動點.

(Ⅰ)當的中點時,求證:
(Ⅱ)若,在線段上是否存在點E,使得二面角的大小為. 若存在,確定點E的位置,若不存在,說明理由.

查看答案和解析>>

同步練習冊答案