角θ的終邊經(jīng)過點(diǎn)P(2,-1),則sinθ=( 。
A、2
B、-1
C、
2
5
5
D、-
5
5
考點(diǎn):任意角的三角函數(shù)的定義
專題:三角函數(shù)的求值
分析:直接利用任意角的三角函數(shù)的定義求解即可.
解答: 解:角θ的終邊經(jīng)過點(diǎn)P(2,-1),
∴x=2,y=-1,r=
22+(-1)2
=
5

∴sinθ=
y
r
=
-1
5
=-
5
5

故選:D.
點(diǎn)評(píng):本題考查三角函數(shù)的定義,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

正項(xiàng)等比數(shù)列{an}滿足a3=1,S3=13,bn=log3an,則數(shù)列{bn}的前10項(xiàng)和是( 。
A、65B、-65
C、25D、-25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

兩個(gè)正數(shù)
5
+1與
5
-1的等比中項(xiàng)是( 。
A、±2B、2C、-2D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1-ex,則f′(0)=( 。
A、0B、-1C、eD、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)(3m-2)+(m-1)i是虛數(shù),則實(shí)數(shù)m應(yīng)滿足的條件是(  )
A、m≠1
B、m≠
2
3
C、m=1
D、m=
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在區(qū)間D上的函數(shù),任給x1,x2∈D,且x1≠x2,都有f(
x1+x2
2
)>
f(x1)+f(x2)
2
,則稱函數(shù)f(x)為區(qū)間D上的嚴(yán)格凸函數(shù).現(xiàn)給出下列命題:
①函數(shù)y=log2x與函數(shù)y=-x2在區(qū)間(0,+∞)上均為嚴(yán)格凸函數(shù);
②函數(shù)y=2x與y=tanx在(-1,1)均不為嚴(yán)格凸函數(shù);
③一定存在實(shí)數(shù)k,使得函數(shù)y=x+
k
x
在區(qū)間(-∞,0)上為嚴(yán)格凸函數(shù).
其中正確的命題個(gè)數(shù)為( 。
A、0個(gè)B、1個(gè)C、2個(gè)D、3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

方程
x2
4-t
+
y2
t-1
=1表示曲線C,給出下列四個(gè)命題,其中正確的命題個(gè)數(shù)是(  )
①若曲線C為橢圓,則1<t<4
②若曲線C為雙曲線,則t<1或t>4
③曲線C不可能是圓
④若曲線C表示焦點(diǎn)在X軸上的橢圓,則1<t<
5
2
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=xlnx.
(1)若不等式c<f(x)恒成立,求c的取值范圍;
(2)令f0(x)=f′(x),f1(x)=f0′(x),f2(x)=f1′(x),…,fn+1(x)=fn′(x);n是正整數(shù);
①寫出函數(shù)f1(x)、f2(x)、f3(x)、f4(x)的表達(dá)式,由此猜想fn(x)(n∈N*)的表達(dá)式;
②用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-(a-2)x-alnx,
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)g(x)=-x3-ax2+a-
a2
4
,若存在α,β∈(0,a],使得|f(α)-g(β)|<a成立,求a的取值范圍;  
(Ⅲ)若方程f(x)=c有兩個(gè)不相等的實(shí)數(shù)根x1,x2,求證:f′(
x1+x2
2
)>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案