根據(jù)兩類不同事物之間具有類似(或一致)性,推測(cè)其中一類事物具有與另一類事物類似(或相同)的性質(zhì)的推理,叫做類比推理.請(qǐng)用類比推理完成下表:
平面空間
三角形的兩邊之和大于第三邊四面體的任意三個(gè)面的面積之和大于第四個(gè)面的面積
三角形的面積等于任意一邊的長(zhǎng)度與這個(gè)邊上高的乘積的二分之一四面體的體積等于任意底面的面積與這個(gè)底面上的高的乘積的三分之一
三角形的面積等于其內(nèi)切圓的半徑與三角形周長(zhǎng)乘積的二分之一
考點(diǎn):類比推理
專題:規(guī)律型,推理和證明
分析:本題考查的知識(shí)點(diǎn)是類比推理,在由平面圖形的性質(zhì)向空間物體的性質(zhì)進(jìn)行類比時(shí),常用的思路有:由平面圖形中點(diǎn)的性質(zhì)類比推理出空間里的線的性質(zhì),由平面圖形中線的性質(zhì)類比推理出空間中面的性質(zhì),由平面圖形中面的性質(zhì)類比推理出空間中體的性質(zhì).
解答: 解:本題由已知前兩組類比可得到如下信息:
①平面中的三角形與空間中的三棱錐是類比對(duì)象;
②三角形各邊的邊長(zhǎng)與三棱錐的各面的面積是類比對(duì)象;
③三角形邊上的高與三棱錐面上的高是類比對(duì)象;
④三角形的面積與三棱錐的體積是類比對(duì)象;
⑤三角形的面積公式中的“二分之一”,與三棱錐的體積公式中的“三分之一”是類比對(duì)象.
由以上分析可知:

故答案為:四面體體積等于其內(nèi)切球半徑與三棱錐表面積的乘積的三分之一.
點(diǎn)評(píng):類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在(0,+∞)上函數(shù)f(x)對(duì)任意正數(shù)m,n都有f(mn)=f(m)+f(n)-
1
2
,當(dāng)x>4時(shí),f(x)>
3
2
,且f(
1
2
)=0.
(1)求f(2)的值;
(2)解關(guān)于x的不等式f(x)+f(x+3)>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={a,
b
a
,1}
,集合B={a2,a+b,0},若A=B,求a2013+b2014的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)計(jì)算[(1+2i)•i100+(
1-i
1+i
5]2-(
1+i
2
20
(2)已知復(fù)數(shù)z1滿足(1+i)z1=-1+5i,z2=a-2-i,其中i為虛數(shù)單位,a∈R,若|z1-
.
z2
|<|z1|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)如圖將△ABC,平行四邊形ABCD,直角梯形ABCD分別繞AB邊所在的直線旋轉(zhuǎn)一周,由此形成的幾何體由哪些簡(jiǎn)單幾何體構(gòu)成.

(2)如圖由哪些簡(jiǎn)單幾何體構(gòu)成.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x∈R|2x-8=0},B={x∈R|x2-2(m+1)x+m2=0}.
(1)若m=4,求A∪B;
(2)若B⊆A,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC三個(gè)內(nèi)角A、B、C所對(duì)邊為a、b、c.
(1)若A=45°,b=30°,a=10
2
,求b;
(2)若a2+b2=c2+ab,且sinA:sinB=b:a,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c(a>0,x∈[-2,-1],且函數(shù)f(x)在x=-1處取到最大值0.
(1)求
c
a
的取值范圍;
(2)求
b2-2ac
ab-a2
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

閱讀程序框圖,運(yùn)行相應(yīng)的程序,輸出x的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案