【題目】某地區(qū)某農產品近幾年的產量統計如表:
年份 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代碼 | 1 | 2 | 3 | 4 | 5 | 6 |
年產量(萬噸) | 6.6 | 6.7 | 7 | 7.1 | 7.2 | 7.4 |
(1)根據表中數據,建立關于的線性回歸方程;
(2)根據線性回歸方程預測2019年該地區(qū)該農產品的年產量.
附:,. 參考數據:
科目:高中數學 來源: 題型:
【題目】如圖一,在四棱錐中,底面,底面是直角梯形,為側棱上一點,且該四棱錐的俯視圖和側視圖如圖二所示.
(1)證明:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,且函數是偶函數,設
(1)求的解析式;
(2)若不等式≥0在區(qū)間(1,e2]上恒成立,求實數的取值范圍;
(3)若方程有三個不同的實數根,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,側面PAD⊥底面ABCD,且△PAD是以AD為底的等腰三角形.
(Ⅰ)證明:AD⊥PB;
(Ⅱ)若四棱錐P-ABCD的體積等于,平面CMN∥平面PAD,且分別交PB,AB于點M,N,試確定M,N的位置,并求△CMN的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我校為豐富師生課余活動,計劃在一塊直角三角形的空地上修建一個占地面積為(平方米)的矩形健身場地,如圖,點在上,點在上,且點在斜邊上,已知, 米, 米, .設矩形健身場地每平方米的造價為元,再把矩形以外(陰影部分)鋪上草坪,每平方米的造價為元(為正常數)
(1)試用表示,并求的取值范圍;
(2)求總造價關于面積的函數;
(3)如何選取,使總造價最低(不要求求出最低造價)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為2的正方體中, , , , 分別是棱, , , 的中點,點, 分別在棱, 上移動,且.
(1)當時,證明:直線平面;
(2)是否存在,使面與面所成的二面角為直二面角?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數在區(qū)間上有最小值1,最大值9.
(1)求實數a,b的值;
(2)設,若不等式在區(qū)間上恒成立,求實數k的取值范圍;
(3)設),若函數有三個零點,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】先閱讀下列不等式的證法,再解決后面的問題:
已知,,求證:.
證明:構造函數,
即
.
因為對一切,恒有,
所以,從而得.
(1)若,,請寫出上述結論的推廣式;
(2)參考上述證法,對你推廣的結論加以證明.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com