定義:在直角坐標(biāo)系中,若不在一直線上的三點A、B、C的坐標(biāo)分別為(x1,y1)、(x2,y2)、(x3,y3),則三角形ABC的面積可以表示為S△ABC=|
1
2
.
x1 y1  1
x2y2     1
x3y3    1
.
|
.已知拋物線y2=4x,過拋物線焦點F斜率為
4
3
的直線l與拋物線交于A、B兩點.
(1)求A、B兩點的坐標(biāo);
(2)若P(3,0),試用行列式計算三角形面積的方法求四邊形APBO的面積S.
(1)拋物線y2=4x中,p=2,
p
2
=1
,故拋物線的焦點的坐標(biāo)為(1,0),
設(shè)A、B兩點的坐標(biāo)分別為(x1,y1)和(x2,y2 ),
由題意有可得 直線AB的方程為  y-0=
4
3
(x-1),即 y=
4
3
(x-1),
代入拋物線y2=4x的方程化簡可得  y2-3x-4=0,
∴y1=-1,y2=4,則x1=
1
4
,x2=4
故A(4,4)、B(
1
4
,-1)
;
(2)由于不在一直線上的三點A、B、C的坐標(biāo)分別為(x1,y1)、(x2,y2)、(x3,y3),
則三角形ABC的面積可以表示為S△ABC=|
1
2
.
x1 y1  1
x2y2     1
x3y3    1
.
|

又由A(4,4)、B(
1
4
,-1)

則四邊形APBO的面積S=S△AOB+S△APB
=|
1
2
.
44     1
1
4
-1    1
0  0    1
.
|
+|
1
2
.
44     1
1
4
-1    1
3  0    1
.
|
=
15
2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,定義:(xnyn)
11
1-1
=(xn+1,yn+1)
,即
xn+1=xn+yn
yn+1=xn-yn
(n∈N*)為點Pn(xn,yn)到點Pn+1(xn+1,yn+1)的一個變換.我們把它稱為點變換(或矩陣變換).已知P1(1,0).
(1)求直線y=x在矩陣變換下的直線方程;
(2)設(shè)dn=|OPn|2(n∈N*),求證:dn為等比數(shù)列,并寫出dn的通項公式;
(3)設(shè)P2(x2,y2)…,Pn(xn+1,yn+1)(n∈N*)是經(jīng)過點變換得到的一列點.求數(shù)列xn,yn的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義:在直角坐標(biāo)系中,若不在一直線上的三點A、B、C的坐標(biāo)分別為(x1,y1)、(x2,y2)、(x3,y3),則三角形ABC的面積可以表示為S△ABC=|
1
2
.
x1 y1  1
x2y2     1
x3y3    1
.
|
.已知拋物線y2=4x,過拋物線焦點F斜率為
4
3
的直線l與拋物線交于A、B兩點.
(1)求A、B兩點的坐標(biāo);
(2)若P(3,0),試用行列式計算三角形面積的方法求四邊形APBO的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在直角坐標(biāo)系中,如果不同兩點A(a,b),B(-a,-b)都在函數(shù)y=h (x )的圖象上,那么稱[A,B]為函數(shù)h(x)的一組“友好點”([A,B]與[B,A]看作一組).已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x+2)=
2
f(x),且當(dāng)x∈[0,2]時,f(x)=sin
π
2
x.則函數(shù)f(x)=
f(x),0<x≤8
-
-x
,-8≤x<0
的“友好點”的組數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年上海市盧灣區(qū)高二(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

定義:在直角坐標(biāo)系中,若不在一直線上的三點A、B、C的坐標(biāo)分別為(x1,y1)、(x2,y2)、(x3,y3),則三角形ABC的面積可以表示為S△ABC=.已知拋物線y2=4x,過拋物線焦點F斜率為的直線l與拋物線交于A、B兩點.
(1)求A、B兩點的坐標(biāo);
(2)若P(3,0),試用行列式計算三角形面積的方法求四邊形APBO的面積S.

查看答案和解析>>

同步練習(xí)冊答案