【題目】設集合,.
(1)若集合含有三個元素,且,這樣的集合有多少個?所有集合中個元素之和是多少?
(2)若集合各含有三個元素,且,,,這樣的集合有多少種配對方式?
【答案】(1)10;420 (2)216.
【解析】
(1)直接根據(jù)組合的定義即可求出;由這樣的集合中每個元素均各有10個,即可得到本題答案;
(2)由題,得符合條件的有三類:①若A不含6且不含12,②若A中含6不含12(或含12不含6),③若A中含6且含12,算出各種情況的個數(shù)再相加,即可得到本題答案.
(1)因為,所以集合A有個,在這20個集合中含有元素2的有個,含有其他各元素的均各有10個,所以集合A中元素之和為;
(2)因為,符合條件的有三類:
①若A不含6且不含12,則A有個,符合條件B的有個,這樣的有對;
②若A中含6不含12(或含12不含6),則A有個,滿足條件的B有個,這樣的有對;
③若A中含6且含12,則A有個,滿足條件的B有個,這樣的有對.
由分類計數(shù)原理,符合條件的共有(對).
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,∠BAC=90°,AB=AC=AA1,且E,F分別是BC,B1C1中點.
(1)求證:A1B∥平面AEC1;
(2)求直線AF與平面AEC1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{}的前n項和為Sn,,且對任意的n∈N*,n≥2都有。
(1)若0,,求r的值;
(2)數(shù)列{}能否是等比數(shù)列?說明理由;
(3)當r=1時,求證:數(shù)列{}是等差數(shù)列。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體的棱長為1,給出下列四個命題:①對角線被平面和平面三等分;②正方體的內切球,與各條棱相切的球,外接球的表面積之比為;(3)以正方體的頂點為頂點的四面體的體積都是;④正方體與以為球心,1為半徑的球的公共部分的體積是,其中正確命題的序號為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某賽季甲、乙兩位運動員每場比賽得分的莖葉圖如圖所示.
(1)從甲、乙兩人的這5次成績中各隨機抽取一個,求甲的成績比乙的成績高的概率;
(2)試用統(tǒng)計學中的平均數(shù)、方差知識對甲、乙兩位運動員的測試成績進行分析.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,如果對于定義域內的任意實數(shù),對于給定的非零常數(shù),總存在非零常數(shù),恒有成立,則稱函數(shù)是上的級類增周期函數(shù),周期為,若恒有成立,則稱函數(shù)是上的級類周期函數(shù),周期為.
(1)已知函數(shù)是上的周期為1的2級類增周期函數(shù),求實數(shù)的取值范圍;
(2)已知,是上級類周期函數(shù),且是上的單調遞增函數(shù),當時,,求實數(shù)的取值范圍;
(3)是否存在實數(shù),使函數(shù)是上的周期為的級類周期函數(shù),若存在,求出實數(shù)和的值,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在下列命題中,正確命題的序號為 (寫出所有正確命題的序號).
①函數(shù)的最小值為;
②已知定義在上周期為4的函數(shù)滿足,則一定為偶函數(shù);
③定義在上的函數(shù)既是奇函數(shù)又是以2為周期的周期函數(shù),則;
④已知函數(shù),則是有極值的必要不充分條件;
⑤已知函數(shù),若,則.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知橢圓的離心率為,分別是橢圈的左、右焦點,橢圓的焦點到雙曲線漸近線的距離為.
(1)求橢圓的方程;
(2)直線與橢圓交于兩點,以線段為直徑的圓經過點,且原點到直線的距離為,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com