【題目】已知函數(shù)是自然對數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若,當時,求函數(shù)的最大值;

(3)若,求證: .

【答案】(1)上單調(diào)遞增,在上單調(diào)遞減.

(2)(3)見解析

【解析】試題分析:(1) 求出得增區(qū)間, 得減區(qū)間;(2)利用導數(shù)研究函數(shù)的單調(diào)性即可求函數(shù)的最大值;(3)化簡已知得, ,然后利用分析法證明原不等式.

試題解析: (1) 的定義域為,且,

,

上單調(diào)遞增,在上單調(diào)遞減.

(2) ,

,

時, ,,

時, ,

上單調(diào)遞增,在上單調(diào)遞減.

.

(3) , .

由(1)知 上單調(diào)遞增,在上單調(diào)遞減,且,

要證,即證,即證,即證,

即證,由于,即證.

恒成立

遞增, 恒成立,

原不等式成立.

【方法點晴】本題主要考查的是利用導數(shù)研究函數(shù)的單調(diào)性、利用導數(shù)研究函數(shù)的最值、不等式的恒成立,屬于難題.利用導數(shù)研究函數(shù)的單調(diào)性進一步求函數(shù)最值的步驟:①確定函數(shù)的定義域;②對求導;③令,解不等式得的范圍就是遞增區(qū)間;令,解不等式得的范圍就是遞減區(qū)間;④根據(jù)單調(diào)性求函數(shù)的極值及最值(閉區(qū)間上還要注意比較端點處函數(shù)值的大。.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的圖象在處的切線方程;

(2)若任意,不等式恒成立,求實數(shù)的取值范圍;

(3)設, ,證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=kx+b的圖象過點(2,1),且b2﹣6b+9≤0
(1)求函數(shù)f(x)的解析式;
(2)若a>0,解關于x的不等式x2﹣(a2+a+1)x+a3+3<f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐 A﹣BCDE中,側(cè)面△ADE為等邊三角形,底面 BCDE是等腰梯形,且CD∥B E,DE=2,CD=4,∠CD E=60°,M為D E的中點,F(xiàn)為AC的中點,且AC=4.
(1)求證:平面 ADE⊥平面BCD;
(2)求證:FB∥平面ADE;
(3)求四棱錐A﹣BCDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】劉徽是我國魏晉時期著名的數(shù)學家,他編著的《海島算經(jīng)》中有一問題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問島高幾何?” 意思是:為了測量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測到島峰,從后表退行127步,也恰觀測到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)

A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C:(x﹣a)2+(y﹣2)2=4(a>0)及直線l:x﹣y+3=0.當直線l被圓C截得的弦長為 時,求
(Ⅰ)a的值;
(Ⅱ)求過點(3,5)并與圓C相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知⊙C過點P(1,1),且與⊙M:(x+2)2+(y+2)2=r2(r>0)關于直線x+y+2=0對稱.
(1)求⊙C的方程;
(2)設Q為⊙C上的一個動點,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直線l過點P(﹣2,1),
(1)若直線l與直線x+y﹣1=0平行,求直線l的方程;
(2)若點A(﹣1,﹣2)到直線l的距離為1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,以為極點, 軸正半軸為極軸建立極坐標系,圓,直線的極坐標方程分別是, .

(1)求的交點的極坐標;

(2)設的圓心, 的交點連線的中點,已知直線的參數(shù)方程為為參數(shù)),求的值.

查看答案和解析>>

同步練習冊答案