【題目】設(shè)是不同的直線, 是不同的平面,已知,下列說法正確的是 ( )

A. ,則 B. ,則

C. ,則 D. ,則

【答案】B

【解析】由已知 ,對于 , , 可能平行,如圖:

對于 ,得到 由面面垂直的判定定理可得正確;對于 ,若 可能相交;如圖:

對于 ,則 ,由線面垂直的性質(zhì)及面面垂直的判定定理可得錯誤,故選B.

【方法點(diǎn)晴】本題主要考查線面平行的判定與性質(zhì)、面面垂直的性質(zhì)及線面垂直的判定,屬于難題.空間直線、平面平行或垂直等位置關(guān)系命題的真假判斷,常采用畫圖(尤其是畫長方體)、現(xiàn)實(shí)實(shí)物判斷法(如墻角、桌面等)、排除篩選法等;另外,若原命題不太容易判斷真假,可以考慮它的逆否命題,判斷它的逆否命題真假,原命題與逆否命題等價.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點(diǎn)坐標(biāo)分別是、,并且經(jīng)過點(diǎn).

(1)求橢圓的方程;

(2)若直線與圓相切,并與橢圓交于不同的兩點(diǎn)、.當(dāng),且滿足時,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過點(diǎn),根據(jù)下列條件分別求出直線的方程:

(1)直線的傾斜角為;

(2)與直線x-2y+1=0垂直;

(3)軸、軸上的截距之和等于0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一批產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤12萬元,該公司通過設(shè)備升級,生產(chǎn)這批產(chǎn)品所需原材料減少了噸,且每噸原材料創(chuàng)造的利潤提高了;若將少用的噸原材料全部用于生產(chǎn)公司新開發(fā)的產(chǎn)品,每噸原材料創(chuàng)造的利潤為萬元,其中

(1)若設(shè)備升級后生產(chǎn)這批產(chǎn)品的利潤不低于原來生產(chǎn)該批產(chǎn)品的利潤,求的取值范圍;

(2)若生產(chǎn)這批產(chǎn)品的利潤始終不高于設(shè)備升級后生產(chǎn)這批產(chǎn)品的利潤,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖, 中, 的中點(diǎn), , .將沿

折起,使點(diǎn)與圖中點(diǎn)重合.

(Ⅰ)求證:;

(Ⅱ)當(dāng)三棱錐的體積取最大時,求二面角的余弦值;

(Ⅲ)在(Ⅱ)的條件下,試問在線段上是否存在一點(diǎn),使與平面所成的角的正弦值為?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x≤1,比較3x33x2x1的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,平行四邊形,直平分,,現(xiàn)將沿如圖2,使

求證:直線;

平面平面成的角銳角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:關(guān)于x的方程x2ax20無實(shí)根,命題q:函數(shù)f(x)logax(0,+)上單調(diào)遞增,若pq為假命題,pq真命題,求實(shí)數(shù)a的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某加工廠需定期購買原材料,已知每公斤原材料的價格為1.5元,每次購買原材料需支付運(yùn)費(fèi)600元,每公斤原材料每天的保管費(fèi)用為0.03元,該廠每天需要消耗原材料400公斤,每次購買的原材料當(dāng)天即開始使用(即有400公斤不需要保管).

)設(shè)該廠每x天購買一次原材料,試寫出每次購買的原材料在x天內(nèi)總的保管費(fèi)用y1關(guān)于x的函數(shù)關(guān)系式;

)求該廠多少天購買一次原材料才能使平均每天支付的總費(fèi)用y最少,并求出這個最少(。┲;

查看答案和解析>>

同步練習(xí)冊答案