【題目】有一個同學家開了一個奶茶店,他為了研究氣溫對熱奶茶銷售杯數(shù)的影響,從一季度中隨機選取5天,統(tǒng)計出氣溫與熱奶茶銷售杯數(shù),如表:
氣溫 | 0 | 4 | 12 | 19 | 27 |
熱奶茶銷售杯數(shù) | 150 | 132 | 130 | 104 | 94 |
(Ⅰ)求熱奶茶銷售杯數(shù)關于氣溫的線性回歸方程(精確到0.1),若某天的氣溫為,預測這天熱奶茶的銷售杯數(shù);
(Ⅱ)從表中的5天中任取兩天,求所選取兩天中至少有一天熱奶茶銷售杯數(shù)大于130的概率.
參考數(shù)據(jù):,.
參考公式:,.
【答案】(1) ﹣2.0x+146.8,預測氣溫為15oC,熱奶茶銷售約117杯;(2).
【解析】
(1)由表格中數(shù)據(jù)計算、,求出回歸系數(shù),再寫出回歸方程,
利用回歸方程求得對應的值;
(2)利用列舉法求出基本事件數(shù),再計算所求的概率值.
(1)由表格中數(shù)據(jù)可得,
=×(0+4+12+19+27)=12.4,=×(150+132+130+104+94)=122;
∴==≈﹣2.0,
==122﹣(﹣2.0)×12.4=146.8;
∴熱奶茶銷售杯數(shù)關于氣溫的線性回歸方程為
=﹣2.0x+146.8;
當x=15時, =﹣2.0×15+146.8=116.8≈117,
即預測氣溫為15oC,這天熱奶茶銷售約117杯;
(2)記表中的第1天到第5天為A、B、c、d、e,其中銷售杯數(shù)大于130的有A、B,
任取兩天有AB,Ac,Ad,Ae,Bc,Bd,Be,cd,ce,de共10種情況;
其中至少有一天銷售杯數(shù)大于130有AB,Ac,Ad,Ae,Bc,Be共7種情況;
∴所選取兩天中至少有一天熱奶茶銷售杯數(shù)大于130的概率為P=.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的方程為,則其長軸長為__________;若為的右焦點, 為的上頂點, 為上位于第一象限內(nèi)的動點,則四邊形的面積的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,三棱錐,側(cè)棱,底面三角形為正三角形,邊長為,頂點在平面上的射影為,有,且.
(Ⅰ)求證: 平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)線段上是否存在點使得⊥平面,如果存在,求的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】運行如圖所示的程序框圖,則輸出的結(jié)果是( )
A.e2016﹣e2015
B.e2017﹣e2016
C.e2015﹣1
D.e2016﹣1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形四點坐標為A(0,-2),C(4,2),B(4,-2),D(0,2).
(1)求對角線所在直線的方程;
(2)求矩形外接圓的方程;
(3)若動點為外接圓上一點,點為定點,問線段PN中點的軌跡是什么,并求出該軌跡方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線E:y2=2px(p>0)的準線與x軸交于點K,過點K作圓(x﹣5)2+y2=9的兩條切線,切點為M,N,|MN|=3
(1)求拋物線E的方程;
(2)設A,B是拋物線E上分別位于x軸兩側(cè)的兩個動點,且 (其中O為坐標原點).
①求證:直線AB必過定點,并求出該定點Q的坐標;
②過點Q作AB的垂線與拋物線交于G,D兩點,求四邊形AGBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= (a>b>0)的圖象是曲線C.
(1)在如圖的坐標系中分別做出曲線C的示意圖,并分別標出曲線C與x軸的左、右交點A1 , A2 .
(2)設P是曲線C上位于第一象限的任意一點,過A2作A2R⊥A1P于R,設A2R與曲線C交于Q,求直線PQ斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知:等比數(shù)列{}中,公比為q,且a1=2,a4=54,等差數(shù)列{}中,公差為d,b1=2,b1+b2+b3+b4=a1+ a2+ a3.
(I)求數(shù)列{}的通項公式;
(II)求數(shù)列{}的前n項和的公式;
(III)設,,其中n=1,2,…,試比較與的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設數(shù)列{an}的前n項和為Sn , 且滿足Sn=2﹣an , n=1,2,3,….
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an , 求數(shù)列{bn}的通項公式;
(3)設cn= ,數(shù)列{cn}的前n項和為Tn= .求n.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com