設函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
1
3
)=1,
(1)求f(1),f(
1
9
),f(9)的值,
(2)如果f(x)+f(2-x)<2,求x的取值范圍.
分析:(1)對題設條件中的恒等式進行賦值,依次可求出f(1),f(
1
9
),f(9)的值
(2)利用題設條件將f(x)+f(2-x)<2這為f[x(2-x)]<f(
1
9
),再利用函數(shù)f(x)是定義在(0,+∞)上的減函數(shù)解不等式.
解答:解:(1)令x=y=1,則f(1)=f(1)+f(1),∴f(1)=0(2分)
令x=3,y=
1
3
,則f(1)=f(3)+f(
1
3
),∴f(3)=-1
∴f(
1
9
)=f(
1
3
× 
1
3
)=f(
1
3
)+f(
1
3
)=2(4分)
∴f(9)=f(3×3)=f(3)+f(3)=-2(6分)
(2)∵f(x)+f(2-x)=f[x(2-x)]<2=f(
1
9
),(8分)
又由函數(shù)f(x)是定義在(0,+∞)上的減函數(shù)得:
x(2-x)>
1
9
x>0
2-x>0
(11分)
解之得:x∈(1-
2
2
3
,1+
2
2
3
)
.(13分)
點評:本題考查抽象函數(shù)及其應用,考查了根據(jù)恒等式的形式以及要求的值靈活賦值求函數(shù)值的能力,以及利用函數(shù)的性質(zhì)解不等式的能力,求解本題的關鍵是恰當賦值,求解第二問時恰當?shù)淖冃问墙忸}的關鍵,在根據(jù)單調(diào)性轉(zhuǎn)化時要注意轉(zhuǎn)化的造價,不要忘記定義域的限制條件.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),如果不等式f(1-ax-x2)<f(2-a)對于任意x∈[0,1]恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)

(2)若f(x)+f(2-x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當x∈[-1,0)時,f(x)=x3-ax(a∈R).
(1)當x∈(0,1]時,求f(x)的解析式;
(2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結論;
(3)是否存在a,使得當x∈(0,1]時,f(x)有最大值1?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在R上的偶函數(shù).若當x≥0時,f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)請你作出函數(shù)f(x)的大致圖象.
(3)當0<a<b時,若f(a)=f(b),求ab的取值范圍.
(4)若關于x的方程f2(x)+bf(x)+c=0有7個不同實數(shù)解,求b,c滿足的條件.

查看答案和解析>>

同步練習冊答案