【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù):

(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測技改后生產(chǎn)100噸甲產(chǎn)品比技改前少消耗多少噸標(biāo)準(zhǔn)煤.

【答案】(1)見解析; (2); (3)19.65(噸標(biāo)準(zhǔn)煤).

【解析】

試題分析:(1)在平面直角坐標(biāo)系中描出四點(diǎn)(3,25)、(4,3)、(5,4)、(6,45),得到散點(diǎn)圖;(2)根據(jù)最小二乘法求出回歸系數(shù),得到回歸直線方程;(3)將x=100代入回歸直線方程得到技改后的生產(chǎn)能耗減去技改前的生產(chǎn)能耗得解.

試題解析:(1)散點(diǎn)圖如下:

2

所以線性同歸方程為:

3=100時(shí),,所以預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低1965噸標(biāo)準(zhǔn)煤.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 , 的夾角為120°,且| |=2,| |=3,則向量2 +3 在向量2 + 方向上的投影為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)常數(shù),函數(shù).

(1) ,求的單調(diào)遞減區(qū)間;

(2) 為奇函數(shù),且關(guān)于的不等式對所有的恒成立,求實(shí)數(shù)的取值范圍;

(3) 當(dāng)時(shí),若方程有三個(gè)不相等的實(shí)數(shù)根、,且,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】潮州統(tǒng)計(jì)局就某地居民的月收入調(diào)查了人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分

布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在)。

(1)求居民月收入在的頻率;

(2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

(3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再從這人中分層抽樣方法抽出人作進(jìn)一步分析,則月收入在的這段應(yīng)抽多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}滿足:a1=1,nan+1﹣(n+1)an=1(n∈N+
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若 ,求數(shù)列{bn}的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某食品廠為了檢查甲、乙兩條自動(dòng)包裝流水線的生產(chǎn)情況,隨機(jī)在這兩條流水線上各抽取40件產(chǎn)品作為樣本,并稱出它們的重量(單位:克),重量值落在[495,510)內(nèi)的產(chǎn)品為合格品,否則為不合格品.統(tǒng)計(jì)結(jié)果如下:

甲流水線樣本的頻數(shù)分布表

產(chǎn)品重量(克)

頻數(shù)

[490,495)

6

[495,500)

8

[500,505)

14

[505,510)

8

[510,515]

4

乙流水線樣本的頻率分布直方圖

(1)求甲流水線樣本合格的頻率;

(2)由以上統(tǒng)計(jì)數(shù)據(jù)完成下面2×2列聯(lián)表,并回答有多大的把握認(rèn)為產(chǎn)品的包裝質(zhì)量與兩條自動(dòng)包裝流水線的選擇有關(guān).

分類

甲流水線

乙流水線

總計(jì)

合格品

不合格品

總計(jì)

附:K2.

P(K2≥k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,x∈R.
(1)證明對a、b∈R,且a≠b,總有:|f(a)﹣f(b)|<|a﹣b|;
(2)設(shè)a、b、c∈R,且 ,證明:a+b+c≥ab+bc+ca.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2017年存節(jié)期間,某服裝超市舉辦了一次有獎(jiǎng)促銷活動(dòng),消費(fèi)每超過600 元(含600元),均可抽獎(jiǎng)一次,抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種. 方案一:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,一次性摸出3個(gè)球,其中獎(jiǎng)規(guī)則為:若摸到3個(gè)紅球,享受免單優(yōu)惠;若摸到2個(gè)紅球,則打6折;若摸到1個(gè)紅球,則打7折;若沒摸到紅球,則不打折.
方案二:從裝有10個(gè)形狀、大小完全相同的小球(其中紅球3個(gè),黑球7個(gè))的抽獎(jiǎng)盒中,有放回每次摸取1球,連摸3次,每摸到1次紅球,立減200元.
(1)若兩個(gè)顧客均分別消費(fèi)了 600元,且均選擇抽獎(jiǎng)方案一,試求兩位顧客均享受免單優(yōu)惠的概率;
(2)若某顧客消費(fèi)恰好滿1000元,試從概率的角度比較該顧客選擇哪一種抽獎(jiǎng)方案更合算.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=x3+ax2+5x+6在區(qū)間[1,3]上為單調(diào)減函數(shù),則實(shí)數(shù)a的取值范圍是( 。

A. [﹣,+∞) B. (﹣∞,﹣3]∪[﹣,+∞)

C. (﹣∞,﹣3] D. [﹣,]

查看答案和解析>>

同步練習(xí)冊答案